How many integer pairs (x , y) satisfy x^2 + 4y^2 − 2xy − 2x − 4y − 8 = 0 ?
\[
x^2 + 4y^2 - 2xy - 2x - 4y - 8 = 0
\]
\[
\Rightarrow x^2 - 2x(y+1) + 4y^2 - 4y - 8 = 0
\]
\[
\Rightarrow x^2 - 2x(y+1) + y^2 + 2y + 1 + 3y^2 - 6y - 9 = 0
\]
\[
\Rightarrow (x - (y+1))^2 + 3(y-1)^2 = 12
\]
\[
\Rightarrow (x - y - 1)^2 + 3(y - 1)^2 = 12
\]
Let \( X = x - y - 1 \) and \( Y = y - 1 \)
\[
\Rightarrow X^2 + 3Y^2 = 12
\]
Since \( x, y \in \mathbb{Z} \), it follows that \( X, Y \in \mathbb{Z} \).
\[
(X^2, Y^2) \in \{(0,4), (9,1), (3,4)\}
\]
\[
(X, Y) \in \{(0,2), (0,-2), (3,1), (3,-1), (-3,1), (-3,-1)\}
\]
Evaluate \( (x, y) \) for each \( (X, Y) \):
\[
X = x - y - 1, \quad Y = y - 1
\]
\[
(x, y) \in \{(4,3), (0,-1), (6,2), (1,0), (0,2), (-2,0)\}
\]
**6 possible integer pairs.**
Comments
Post a Comment