Divisibility by 13

Divisibility “rule” for 13 (subtract 9 times the last digit)

A known test for divisibility by 1313 works by taking the last digit, multiplying it by 99, and then subtracting that product from the remaining truncated part of the number. If the result is divisible by 1313, then the original number is divisible by 1313. Here’s how it looks for 533533:

  1. Split off the last digit (33) and the rest of the number (5353).

  2. Multiply the last digit by 99: 3×9=273 \times 9 = 27.

  3. Subtract that from the truncated part: 5327=2653 - 27 = 26.

  4. Since 2626 is divisible by 1313 (i.e., 26=13×226 = 13 \times 2), 533533 is also divisible by 1313.

Either approach quickly confirms that 533=13×41533 = 13 \times 41.

Proof:

Below is a short, purely “algebraic” proof of the rule

A decimal number NN is divisible by 13 if and only if “take its last digit bb, multiply it by 9, and subtract that from the truncated part aa.” The resulting number, a9ba - 9b, must also be divisible by 1313.

We never explicitly mention “modular arithmetic” or “congruences”; we only use the idea that “xx is divisible by 1313” means “xx is a multiple of 1313.”


Setting Up the Problem

Let NN be a decimal number with last digit bb and “truncated part” aa.
In other words,

N=10a+b,N = 10a + b,

where 0b90 \le b \le 9 and aa is the integer we get by removing the final digit of NN.

We want to show:

13  divides  N=10a+b13  divides  (a    9b).13 \;\text{divides}\; N = 10a + b \quad\Longleftrightarrow\quad 13 \;\text{divides}\; (a \;-\; 9b).


Forward Direction (if 1313 divides NN, it divides a9ba - 9b)

  1. Assume 10a+b10a + b is a multiple of 1313.
    That is, there exists an integer cc such that

    10a+b  =  13c.10a + b \;=\; 13\,c.
  2. Rewrite “10aa” as “(13 - 3)aa.”
    Since 10=13310 = 13 - 3, we have

    10a+b  =  (133)a+b  =  13a    3a  +  b.10a + b \;=\; (13 - 3)\,a + b \;=\; 13a \;-\; 3a \;+\; b.

    Hence

    13c  =  13a  +  (b3a).13\,c \;=\; 13a \;+\; \bigl(b - 3a\bigr).

    Rearrange to get

    b3a  =  13(ca).b - 3a \;=\; 13\,(c - a).

    So b3ab - 3a is also a multiple of 1313.
    Write bb as

    b  =  3a+13m,where m=ca.b \;=\; 3a + 13\,m,\quad \text{where }m \,=\, c-a.
  3. Check a9ba - 9b.
    Substituting b=3a+13mb = 3a + 13m, we get

    a    9b  =  a9(3a+13m)  =  a27a    117m  =  26a    117m.a \;-\; 9b \;=\; a - 9\bigl(3a + 13m\bigr) \;=\; a - 27a \;-\; 117m \;=\; -26a \;-\; 117m.

    Factor out 1313:

    26a    117m  =  13(2a+9m).-26a \;-\; 117m \;=\; -13\,\bigl(2a + 9m\bigr).

    Thus a9ba - 9b is a multiple of 1313.

Hence, if 1313 divides N=10a+bN=10a+b, then it must also divide a9b.\,a - 9b.


Reverse Direction (if 1313 divides a9ba - 9b, it divides NN)

  1. Assume a9ba - 9b is a multiple of 1313.
    That is, there exists an integer dd such that

    a    9b  =  13d.a \;-\; 9b \;=\; 13\,d.

    Rearrange to get

    a  =  9b+13d.a \;=\; 9b + 13\,d.
  2. Substitute into N=10a+bN = 10a + b.

    10a+b  =  10(9b+13d)  +  b  =  90b+130d+b  =  91b+130d.10a + b \;=\; 10\bigl(9b + 13d\bigr) \;+\; b \;=\; 90b + 130d + b \;=\; 91b + 130d.

    Factor out 1313:

    91b+130d  =  13(7b+10d).91b + 130d \;=\; 13\,\bigl(7b + 10d\bigr).

    So 10a+b10a + b is a multiple of 1313.

Thus, if 1313 divides a9ba - 9b, then it must also divide NN.


Conclusion

Putting both directions together shows

10a+b is divisible by 13”        a9b is divisible by 13.”\text{“\(10a + b\) is divisible by 13”} \;\;\Longleftrightarrow\;\; \text{“\(a - 9b\) is divisible by 13.”}

In words: A number NN is divisible by 13 exactly if, after you remove its last digit bb, multiply that digit by 9, and subtract from the remaining part aa, you get a multiple of 13.

Comments

Popular posts from this blog

Combinatorics DPP - RACE 6 - Q16 pending discussion

Geometry practice problems

Pre RMO 2018(IOQM), Question 2 incircle quadrilateral