Divisibility by 7

 Below is a short, purely “algebraic” argument (no explicit modular arithmetic) for the common test for divisibility by 7:

Take the last digit of the number, double it, and subtract that product from the remaining truncated part. If the result is divisible by 7, then the original number is also divisible by 7.

In a formula:

  • Let NN have last digit bb and truncated part aa.
    So N=10a+bN = 10a + b.

  • The rule says:

    N is divisible by 7”    a2b is divisible by 7.”\text{“\(N\) is divisible by 7”} \;\Longleftrightarrow\; \text{“\(a - 2b\) is divisible by 7.”}

We prove this equivalence purely via algebraic manipulation and the notion of “multiple of 7.”


Forward Direction

(If NN is divisible by 7, then a2ba - 2b is also divisible by 7.)

  1. Assume 10a+b10a + b is a multiple of 7.
    That is, there exists some integer kk such that

    10a+b  =  7k. 10a + b \;=\; 7k.
  2. Rewrite “10a10a” as “(7+3)a(7 + 3)a.”
    Since 10=7+310 = 7 + 3, we have:

    10a+b  =  (7+3)a+b  =  7a+(3a+b). 10a + b \;=\; (7 + 3)\,a + b \;=\; 7a + (\,3a + b\,).

    So

    7k  =  7a+(3a+b). 7k \;=\; 7a + (\,3a + b\,).

    Subtract 7a7a from both sides:

    3a+b  =  7(ka). 3a + b \;=\; 7\,(k - a).

    Hence 3a+b\,3a + b is itself a multiple of 7.
    Call that multiple 7m7m, i.e.

    3a+b  =  7m,where m=ka. 3a + b \;=\; 7m, \quad \text{where } m = k - a.
  3. Express bb in terms of aa.
    From 3a+b=7m3a + b = 7m, we get

    b=7m    3a. b = 7m \;-\; 3a.
  4. Check a2ba - 2b.
    Substitute b=7m3ab = 7m - 3a:

    a    2b  =  a2(7m3a)  =  a14m+6a  =  7a    14m. a \;-\; 2b \;=\; a - 2\bigl(7m - 3a\bigr) \;=\; a - 14m + 6a \;=\; 7a \;-\; 14m.

    Factor out 7:

    7a14m  =  7(a2m). 7a - 14m \;=\; 7\,(\,a - 2m\,).

    Thus a2ba - 2b is a multiple of 7.

Therefore, whenever 10a+b10a + b is divisible by 7, a2ba - 2b must also be divisible by 7.


Reverse Direction

(If a2ba - 2b is divisible by 7, then NN is divisible by 7.)

  1. Assume a2ba - 2b is a multiple of 7.
    That is, there exists an integer nn such that

    a    2b  =  7n. a \;-\; 2b \;=\; 7n.

    Rearrange it to solve for aa:

    a  =  2b+7n. a \;=\; 2b + 7n.
  2. Substitute into N=10a+bN = 10a + b.

    10a+b  =  10(2b+7n)  +  b  =  20b+70n+b  =  21b+70n. 10a + b \;=\; 10\bigl(2b + 7n\bigr) \;+\; b \;=\; 20b + 70n + b \;=\; 21b + 70n.

    Factor out 7:

    21b+70n  =  7(3b+10n). 21b + 70n \;=\; 7\,\bigl(3b + 10n\bigr).

    Hence 10a+b10a + b is also a multiple of 7.

Therefore, a2ba - 2b is divisible by 7 if and only if NN is divisible by 7.


Conclusion

Putting both parts together, we have shown purely by algebra that

10a+b  is a multiple of 7a2b  is a multiple of 7.10a + b\; \text{is a multiple of 7} \quad\Longleftrightarrow\quad a - 2b \;\text{is a multiple of 7}.

In everyday language:

A decimal number is divisible by 7 if and only if, when you double its last digit and subtract that from the rest of the number, the result is divisible by 7.

Comments

Popular posts from this blog

Combinatorics DPP - RACE 6 - Q16 pending discussion

Geometry practice problems

Pre RMO 2018(IOQM), Question 2 incircle quadrilateral