prmo 2013 question 16

4. Let 

f(x)=x33x+bf(x) = x^3 - 3x + b and g(x)=x2+bx3g(x) = x^2 + bx - 3, where bb is a real number. What is the sum of all possible value of bb for which the equation f(x)=0f(x) = 0 and g(x)=0g(x) = 0 have a common root?
[PRE-RMO – 2013]


Solution:

Suppose 

x=αx=\alpha is a common root of

f(x)  =  x33x+bandg(x)  =  x2+bx3.f(x) \;=\; x^{3}-3x+b \quad\text{and}\quad g(x) \;=\; x^{2}+bx-3.

Then

α33α+b  =  0,\alpha^{3}-3\alpha + b \;=\; 0, α2+bα3  =  0.\alpha^{2}+b\,\alpha - 3 \;=\; 0.

From the second equation, provided α0\alpha \neq 0, solve for bb:

b  =  3α2α.b \;=\;\frac{3 - \alpha^{2}}{\alpha}.

Substitute this into the first equation:

α33α  +  3α2α  =  0,\alpha^{3} - 3\alpha \;+\; \frac{3 - \alpha^{2}}{\alpha} \;=\; 0,

and multiply through by α\alpha (again using α0\alpha \neq 0):

α4    3α2  +  (3    α2)  =  α4    4α2  +  3  =  0.\alpha^{4} \;-\; 3\alpha^{2} \;+\;(3 \;-\;\alpha^{2}) \;=\; \alpha^{4} \;-\; 4\alpha^{2} \;+\; 3 \;=\; 0.

Make the substitution y=α2y=\alpha^{2}. Then

y24y+3  =  0(y3)(y1)=0y=1  or  y=3.y^{2} - 4y + 3 \;=\; 0 \quad\Longrightarrow\quad (y-3)(y-1)=0 \quad\Longrightarrow\quad y=1\;\text{or}\;y=3.

Hence α2=1\alpha^2=1 (so α=±1\alpha=\pm 1) or α2=3\alpha^2=3 (so α=±3\alpha=\pm\sqrt{3}). In each case,

b  =  3α2αb \;=\; \frac{3-\alpha^2}{\alpha}

gives the following possibilities:

α=1b=2,α=1b=2,α=±3b=0.\begin{aligned} \alpha = 1 &\quad\Longrightarrow\quad b = 2,\\ \alpha = -1 &\quad\Longrightarrow\quad b = -2,\\ \alpha = \pm\sqrt{3} &\quad\Longrightarrow\quad b = 0. \end{aligned}

Thus the values of bb that yield a common root are 2,2,2,\,-2, and 00. Their sum is

2+(2)+0  =  0.

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics