PRMO 2017 Question 15

15. Integers 1, 2, 3, ..., n where n > 2 are written on a board. Two numbers m, k (such that 1 < m < n, 1 < k < n) are removed and the average of the remaining numbers is found to be 17. What is the maximum sum of the two removed numbers? [PRE-RMO – 2017]


Solution:


Let two numbers moved be 1, 2.

Then average of remaining (n − 2) numbers

xˉ1=n(n+1)23÷(n2)=n2+n62(n2)=(n+3)(n2)2(n2)=n+32\bar{x}_1 = \frac{n(n+1)}{2} - 3 \div (n - 2) = \frac{n^2 + n - 6}{2(n - 2)} = \frac{(n + 3)(n - 2)}{2(n - 2)} = \frac{n + 3}{2}

If two numbers be n,n1n, n - 1, then

xˉ2=n(n+1)2(2n1)÷(n2)=n23n+22(n2)=n12\bar{x}_2 = \frac{n(n + 1)}{2} - (2n - 1) \div (n - 2) = \frac{n^2 - 3n + 2}{2(n - 2)} = \frac{n - 1}{2}

Now, the removed numbers are m,km, k, then new
average is 17 i.e.,

17=n(n+1)2(m+k)÷(n2)17 = \frac{n(n + 1)}{2} - (m + k) \div (n - 2)

Clearly,

n12<17<n+32\frac{n - 1}{2} < 17 < \frac{n + 3}{2}

n<35n < 35 & n>31n > 31
n=32,33,34n = 32, 33, 34

17=n(n+1)2(m+k)÷(n2)17 = \frac{n(n + 1)}{2} - (m + k) \div (n - 2)

(m+k)=n(n+1)34(n2)2(m + k) = \frac{n(n + 1) - 34(n - 2)}{2}

When n=32n = 32m+k=18m + k = 18
n=33n = 33m+k=34m + k = 34
n=34n = 34m+k=51m + k = 51

(m+k)max=51(m + k)_{\text{max}} = 51

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

IOQM 2023 solutions