Trigonometry practice
Q1. If
$$
\sin A - \sqrt{6}\,\cos A = \sqrt{7}\,\cos A
$$
then
$$
\cos A + \sqrt{6}\,\sin A =\;?
$$
Options: (1) \(\sqrt{6}\sin A\) (2) \(\sqrt{7}\sin A\) (3) \(\sqrt{6}\cos A\) (4) \(\sqrt{7}\cos A\)
Answer: (2) \(\sqrt{7}\sin A\)
Q2. The minimum value of $$ 7\cos \theta + 24\sin \theta $$ is ?
Options: (1) 25 (2) -7 (3) -25 (4) None
Answer: -25
Q3. Let $$ \sin(2x)=\frac{1}{7}. $$ Find the numerical value of $$ \sin(x)\sin(x)\sin(x)\sin(x)\;+\;\cos(x)\cos(x)\cos(x)\cos(x). $$
Answer: 97/98
Q4. Let x be a real number such that $$ \sec x - \tan x = 2. $$ Then $$ \sec x + \tan x =\;? $$
Options: (A) 0.1 (B) 0.2 (C) 0.3 (D) 0.4 (E) 0.5
Answer: (E) 0.5
Q5. If $$ \sin(x) = 3\cos(x) $$ then what is $$ \sin(x)\cdot\cos(x)\;? $$
Options: (A) \(\tfrac{1}{6}\) (B) \(\tfrac{1}{5}\) (C) \(\tfrac{2}{9}\) (D) \(\tfrac{1}{4}\) (E) \(\tfrac{3}{10}\)
Answer: (E) 3/10
Q6. In a right triangle the square of the hypotenuse is equal to twice the product of the legs. One of the acute angles of the triangle is:
Options(all in degrees): (A) 15 (B) 30 (C) 45 (D) 60 (E) 75
Answer: (C) 45
Q7. Suppose that $$ \sin a + \sin b = \sqrt{\frac{5}{3}} \quad\text{and}\quad \cos a + \cos b = 1. $$ What is $$ \cos(a - b)\;? $$
Answer: 1/3
Options: (1) \(\sqrt{6}\sin A\) (2) \(\sqrt{7}\sin A\) (3) \(\sqrt{6}\cos A\) (4) \(\sqrt{7}\cos A\)
Answer: (2) \(\sqrt{7}\sin A\)
Q2. The minimum value of $$ 7\cos \theta + 24\sin \theta $$ is ?
Options: (1) 25 (2) -7 (3) -25 (4) None
Answer: -25
Q3. Let $$ \sin(2x)=\frac{1}{7}. $$ Find the numerical value of $$ \sin(x)\sin(x)\sin(x)\sin(x)\;+\;\cos(x)\cos(x)\cos(x)\cos(x). $$
Answer: 97/98
Q4. Let x be a real number such that $$ \sec x - \tan x = 2. $$ Then $$ \sec x + \tan x =\;? $$
Options: (A) 0.1 (B) 0.2 (C) 0.3 (D) 0.4 (E) 0.5
Answer: (E) 0.5
Q5. If $$ \sin(x) = 3\cos(x) $$ then what is $$ \sin(x)\cdot\cos(x)\;? $$
Options: (A) \(\tfrac{1}{6}\) (B) \(\tfrac{1}{5}\) (C) \(\tfrac{2}{9}\) (D) \(\tfrac{1}{4}\) (E) \(\tfrac{3}{10}\)
Answer: (E) 3/10
Q6. In a right triangle the square of the hypotenuse is equal to twice the product of the legs. One of the acute angles of the triangle is:
Options(all in degrees): (A) 15 (B) 30 (C) 45 (D) 60 (E) 75
Answer: (C) 45
Q7. Suppose that $$ \sin a + \sin b = \sqrt{\frac{5}{3}} \quad\text{and}\quad \cos a + \cos b = 1. $$ What is $$ \cos(a - b)\;? $$
Answer: 1/3
Comments
Post a Comment