PRMO 2012 question 17

17. Let \(x_1, x_2, x_3\) be the roots of the equation \(x^3 + 3x + 5 = 0\). What is the value of the expression $$ \left( x_1 + \frac{1}{x_1} \right)\left( x_2 + \frac{1}{x_2} \right)\left( x_3 + \frac{1}{x_3} \right)? $$ Solution: $$ x^2 + 3x + 5 = 0 $$ By Vitae's formulae: $$ x_1 + x_2 + x_3 = 0 $$ $$ 3 = x_1 x_2 + x_2 x_3 + x_3 x_1 $$ $$ -5 = x_1 x_2 x_3 $$ So the given sum becomes: $$ \frac{{(x_1^2 + 1)(x_2^2 + 1)(x_3^2 + 1)}}{(x_1)(x_2)(x_3)} $$ We know the denominator here is -5.
So let's work on numerator. First expand the numerator, then use these 2 substitutions: $$ (x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2(x_1x_2 + x_2x_3 + x_3x_1) $$ and similarly $$ (x_1x_2 + x_2x_3 + x_3x_1)^2 = ... $$ to get the final answer -29/5.

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics