PRMO 2012 question 17
17. Let \(x_1, x_2, x_3\) be the roots of the equation \(x^3 + 3x + 5 = 0\). What is the value of the expression
$$
\left( x_1 + \frac{1}{x_1} \right)\left( x_2 + \frac{1}{x_2} \right)\left( x_3 + \frac{1}{x_3} \right)?
$$
Solution:
$$
x^2 + 3x + 5 = 0
$$
By Vitae's formulae:
$$
x_1 + x_2 + x_3 = 0
$$
$$
3 = x_1 x_2 + x_2 x_3 + x_3 x_1
$$
$$
-5 = x_1 x_2 x_3
$$
So the given sum becomes:
$$
\frac{{(x_1^2 + 1)(x_2^2 + 1)(x_3^2 + 1)}}{(x_1)(x_2)(x_3)}
$$
We know the denominator here is -5.
So let's work on numerator. First expand the numerator, then use these 2 substitutions: $$ (x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2(x_1x_2 + x_2x_3 + x_3x_1) $$ and similarly $$ (x_1x_2 + x_2x_3 + x_3x_1)^2 = ... $$ to get the final answer -29/5.
So let's work on numerator. First expand the numerator, then use these 2 substitutions: $$ (x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2(x_1x_2 + x_2x_3 + x_3x_1) $$ and similarly $$ (x_1x_2 + x_2x_3 + x_3x_1)^2 = ... $$ to get the final answer -29/5.
Comments
Post a Comment