Q25

Q25

"Given that (1+sint)(1+cost)=54(1 + \sin t)(1 + \cos t) = \frac{5}{4} and (1sint)(1cost)=mnk(1 - \sin t)(1 - \cos t) = \frac{m}{n} - \sqrt{k}, where k,mk, m and nn are positive integers with mm and nn relatively prime, find k+m+n+3k + m + n + 3"

Answer: 30

Solution sketch

Let S=sintS=\sin t and C=costC=\cos t.


1. Use the first condition

(1+S)(1+C)=54(1+S)(1+C)=\tfrac54   1+S+C+SC=54          S+C+SC=14.(A)\Longrightarrow\;1+S+C+SC=\tfrac54\;\;\; \Rightarrow\;\; S+C+SC=\tfrac14. \tag{A}

Define

u=S+C,v=SC.u=S+C,\quad v=SC .

Then (A) says u+v=14u+v=\tfrac14.


2. Relate uu and vv with S2+C2=1S^2+C^2=1

S2+C2=(S+C)22SC=u22v=1.(B)S^2+C^2=(S+C)^2-2SC=u^2-2v=1. \tag{B}


3. Solve the system

From v=14uv=\tfrac14-u (by A), substitute in (B):

u22 ⁣(14u)=1        u2+2u32=0u^2-2\!\left(\tfrac14-u\right)=1 \;\;\Longrightarrow\;\; u^2+2u-\tfrac32=0 2u2+4u3=0u=2+102    (the other root is extraneous).2u^2+4u-3=0 \quad\Rightarrow\quad u=\frac{-2+\sqrt{10}}{2}\;\;(\text{the other root is extraneous}).

Hence

u=1022,v=14u=52104.u=\frac{\sqrt{10}-2}{2},\qquad v=\frac14-u=\frac{5-2\sqrt{10}}{4}.


4. Compute (1sint)(1cost)(1-\sin t)(1-\cos t)

(1S)(1C)=1(S+C)+SC=1u+v=4102+52104=13410.(1-S)(1-C)=1-(S+C)+SC =1-u+v =\frac{4-\sqrt{10}}{2}+\frac{5-2\sqrt{10}}{4} =\frac{13}{4}-\sqrt{10}.


5. Match the required form

(1sint)(1cost)=13410  =  mnk,(1-\sin t)(1-\cos t)=\frac{13}{4}-\sqrt{10} \;=\;\frac{m}{n}-\sqrt{k},

so m=13,  n=4  (gcd(13,4)=1),  k=10m=13,\;n=4\;( \gcd(13,4)=1),\;k=10.


6. Final value

k+m+n+3=10+13+4+3=30.

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics