Algebra IOQM theory - 1
Common identities:
Common Algebraic Identities :
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
Let's spend some time on the last (ix) identity:
a + b + c = 0 ⇒ a² + b² + c² = 3abc
a³ + b³ + c³ = 3abc ⇒ (a + b + c)(a² + b² + c² - ab - bc - ca) = 0
a³ + b³ + c³ = 3abc ⇒ (a + b + c)(a² + b² + c² - ab - bc - ca) = 0
=> a + b + c = 0 OR a² + b² + c² - ab - bc - ca = 0
a² + b² + c² - ab - bc - ca = 0 (multiply by 2)
=> 2a² + 2b² + 2c² - 2ab - 2bc - 2ca = 0
=> a² - 2ab + b² - 2bc + c² - 2ca + a² + b² + c² = 0
⇒ (a - b)² + (b - c)² + (c-a)² = 0
=> a = b = c
------------------------------
(X) a² + b² + c² - ab - bc - ca = (1/2) [(a - b)² + (b - c)² + (c - a)²]
(XI) aⁿ - bⁿ = (a - b)(aⁿ⁻¹ + aⁿ⁻²b + aⁿ⁻³b² + ⋯ + abⁿ⁻² + bⁿ⁻¹)
a² - b² = (a - b)(a + b)
a³ - b³ = (a - b)(a² + ab + b²)
a⁴ - b⁴ = (a - b)(a³ + a²b + ab² + b³)
(XII)
(XIII)
Let be an odd natural number:
Next intro to Complex Numbers.
Imaginary might be wrong word, they just exist in different dimension(Plane rather than 1 line dimension).
Multiplication/Addition/Division of Complex numbers.
Complex Conjugate and its use in division (similar to rationalization).
------------
Quadratic equation: Dharacharya formula, discriminant and its usages.
Roots are always 2, solutions may be 1 or 2.
--------
AP,GP,HP and their nth term.
Arithmetic,Geometric,Harmonic mean.
Comments
Post a Comment