Algebra theory inequalities continued

Ex1:
x4+px3+qx2+rx+s=0x^4 + px^3 + qx^2 + rx + s = 0 has 4 positive real roots. Then prove that

a) pr16s0pr - 16s \geq 0
b) q236s0q^2 - 36s \geq 0


Let α,β,γ,δ\alpha, \beta, \gamma, \delta be the roots.

S1=α+β+γ+δ=pS2=αβ+αγ+αδ+βγ+βδ+γδ=qS3=αβγ+αβδ+αγδ+βγδ=rS4=αβγδ=s\begin{aligned} S_1 &= \alpha + \beta + \gamma + \delta = -p \\ S_2 &= \alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = q \\ S_3 &= \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = -r \\ S_4 &= \alpha\beta\gamma\delta = s \end{aligned}

(a) pr16spr \geq 16s

Using AM ≥ GM for {α,β,γ,δ}\{ \alpha, \beta, \gamma, \delta \}:

α+β+γ+δ4(αβγδ)1/4p4s1/4\frac{\alpha + \beta + \gamma + \delta}{4} \geq (\alpha \beta \gamma \delta)^{1/4} \Rightarrow \frac{-p}{4} \geq s^{1/4}

Using AM ≥ GM for {αβγ,αβδ,αγδ,βγδ}\{ \alpha\beta\gamma, \alpha\beta\delta, \alpha\gamma\delta, \beta\gamma\delta \}:

αβγ+αβδ+αγδ+βγδ4(α3β3γ3δ3)1/4r4s3/4\frac{\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta}{4} \geq (\alpha^3 \beta^3 \gamma^3 \delta^3)^{1/4} \Rightarrow \frac{-r}{4} \geq s^{3/4}

Multiplying the two inequalities:

pr16spr16s\frac{pr}{16} \geq s \Rightarrow pr \geq 16s

(b) q236sq^2 \geq 36s

Using AM ≥ GM for {αβ,αγ,αδ,βγ,βδ,γδ}\{ \alpha\beta, \alpha\gamma, \alpha\delta, \beta\gamma, \beta\delta, \gamma\delta \}:

αβ+αγ+αδ+βγ+βδ+γδ6(α2β2γ2δ2)1/6q6s1/2q236s\frac{\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta}{6} \geq (\alpha^2 \beta^2 \gamma^2 \delta^2)^{1/6} \Rightarrow \frac{q}{6} \geq s^{1/2} \Rightarrow q^2 \geq 36s


Ex2: Prove that if a,b,c are positive numbers then:

b+ca+c+ab+a+bc6\frac{b + c}{a} + \frac{c + a}{b} + \frac{a + b}{c} \geq 6

Method1:
Add 1 to each fraction:
(b+c)/a + 1 + ... >= 9
=> (a+b+c)[1/a + 1/b + 1/c] >= 9
=> (a+b+c)/3 >= 3/[1/a + 1/b + 1/c]
Which is nothing but 
A.M. >= H.M. for a,b,c
H.P.

Method2:
Rewrite the given inequality as:
b/a + c/a + c/b + a/b + a/c + b/c >= 6
[b/a + c/a + c/b + a/b + a/c + b/c]/6 >= 1

1 on the R.H.S can be written as:
[b/a * c/a * c/b * a/b * a/c * b/c] since everything cancels out.
So again it's proven using A.M. >= G.M.

Ex3:

Given a>0a > 0, prove that:

(a3+a2+a+1)216a3\left( a^3 + a^2 + a + 1 \right)^2 \geq 16a^3


Solution:
Simply do A.M. >= G.M. for the given 4 numbers
(1 + a + a^2 + a^3)/4 >= (1 * a * a^2 * a^3)^(1/4) = a^(3/2)
=> (1 + a + a^2 + a^3) >= = 4.a^(3/2)
=> (1 + a + a^2 + a^3)^2 >= = 16.a^(3)
H.P.

Ex4.

a1,a2,a3,,ana_1, a_2, a_3, \ldots, a_n are positive numbers.

Prove that

n(a1a2a3an)a1n+a2n++annn(a_1 a_2 a_3 \cdots a_n) \leq a_1^n + a_2^n + \cdots + a_n^n


Solution:
Straightforward application of A.M. >= G.M. on a1^n, a2^n ... an^n

Ex5.

Given:

0<a,b,c<1anda+b+c=20 < a, b, c < 1 \quad \text{and} \quad a + b + c = 2

Prove that:

a1ab1bc1c8\frac{a}{1 - a} \cdot \frac{b}{1 - b} \cdot \frac{c}{1 - c} \geq 8


Solution:


Given:

a+b+c=2and0<a,b,c<1a + b + c = 2 \quad \text{and} \quad 0 < a, b, c < 1

Rewrite the given inequality as:

abc2(1a)2(1b)2(1c)a \cdot b \cdot c \geq 2(1 - a) \cdot 2(1 - b) \cdot 2(1 - c) abc(22a)(22b)(22c)abc \geq (2 - 2a)(2 - 2b)(2 - 2c) abc(b+ca)(a+cb)(a+bc)abc \geq (b + c - a)(a + c - b)(a + b - c)


Using AM ≥ GM:

For the pair {a+cb,a+bc}\{a + c - b, a + b - c\}:

a+cb+a+bc2(a+cb)(a+bc)a(a+cb)(a+bc)(i)\frac{a + c - b + a + b - c}{2} \geq \sqrt{(a + c - b)(a + b - c)} \Rightarrow a \geq \sqrt{(a + c - b)(a + b - c)} \quad \text{(i)}

For {b+ca,b+ac}\{b + c - a, b + a - c\}:

b+ca+b+ac2(b+ca)(b+ac)b(b+ca)(b+ac)(ii)\frac{b + c - a + b + a - c}{2} \geq \sqrt{(b + c - a)(b + a - c)} \Rightarrow b \geq \sqrt{(b + c - a)(b + a - c)} \quad \text{(ii)}

For {c+ab,c+ba}\{c + a - b, c + b - a\}:

c(c+ab)(c+ba)(iii)\Rightarrow c \geq \sqrt{(c + a - b)(c + b - a)} \quad \text{(iii)}

Multiplying (i), (ii), and (iii):

abc(a+cb)(b+ca)(a+bc)abc \geq (a + c - b)(b + c - a)(a + b - c)



Ex6.

a,b,ca, b, c are positive numbers such that

a+b+c=1a + b + c = 1

Then prove that:

(1+a)(1+b)(1+c)8(1a)(1b)(1c)(1 + a)(1 + b)(1 + c) \geq 8(1 - a)(1 - b)(1 - c)


From the condition:

a+b+c=11+a+b+c=21+a=2bc1+a=(1b)+(1c)a + b + c = 1 \Rightarrow 1 + a + b + c = 2 \Rightarrow 1 + a = 2 - b - c \Rightarrow 1 + a = (1 - b) + (1 - c)


Using AM ≥ GM for {1b,1c}\{1 - b, 1 - c\}:

1b+1c2(1b)(1c)1+a2(1b)(1c)\frac{1 - b + 1 - c}{2} \geq \sqrt{(1 - b)(1 - c)} \Rightarrow 1 + a \geq 2\sqrt{(1 - b)(1 - c)}

Similarly:

1+b2(1c)(1a)1+c2(1a)(1b)1 + b \geq 2\sqrt{(1 - c)(1 - a)} \\ 1 + c \geq 2\sqrt{(1 - a)(1 - b)}


Multiplying all three inequalities:

(1+a)(1+b)(1+c)8(1b)(1c)(1c)(1a)(1a)(1b)(1+a)(1+b)(1+c)8(1a)(1b)(1c)(1 + a)(1 + b)(1 + c) \geq 8 \sqrt{(1 - b)(1 - c)(1 - c)(1 - a)(1 - a)(1 - b)} \Rightarrow (1 + a)(1 + b)(1 + c) \geq 8(1 - a)(1 - b)(1 - c)


Ex7:


1x+1y+1z=1,with x,y,z>0\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1, \quad \text{with } x, y, z > 0

Prove that:

(x1)(y1)(z1)8(x - 1)(y - 1)(z - 1) \geq 8


Approach using AM ≥ GM on pairs:

1x+1y21xy1y+1z21yz1z+1x21zx\frac{1}{x} + \frac{1}{y} \geq 2\sqrt{\frac{1}{xy}} \\ \frac{1}{y} + \frac{1}{z} \geq 2\sqrt{\frac{1}{yz}} \\ \frac{1}{z} + \frac{1}{x} \geq 2\sqrt{\frac{1}{zx}}

So, in general:

(1x+1y)(1y+1z)(1z+1x)8xyz\left( \frac{1}{x} + \frac{1}{y} \right)\left( \frac{1}{y} + \frac{1}{z} \right)\left( \frac{1}{z} + \frac{1}{x} \right) \geq \frac{8}{xyz}

Now take:

(11x)(11y)(11z)=(x1)(y1)(z1)1xyz\left(1 - \frac{1}{x}\right)\left(1 - \frac{1}{y}\right)\left(1 - \frac{1}{z}\right) = (x - 1)(y - 1)(z - 1) \cdot \frac{1}{xyz}

So multiplying both sides:

(x1)(y1)(z1)8(x - 1)(y - 1)(z - 1) \geq 8


Ex8:

Prove that:

a8(1+b8)+b8(1+c8)+c8(1+d8)+d8(1+a8)>8a2b3c2d3a^8(1 + b^8) + b^8(1 + c^8) + c^8(1 + d^8) + d^8(1 + a^8) > 8a^2b^3c^2d^3

Given that a,b,c,da, b, c, d are 4 distinct positive numbers.


Solution:


Given:

a8(1+b8)+b8(1+c8)+c8(1+d8)+d8(1+a8)a^8(1 + b^8) + b^8(1 + c^8) + c^8(1 + d^8) + d^8(1 + a^8)

Expanded as:

a8+a8b8+b8+b8c8+c8+c8d8+d8+d8a8a^8 + a^8b^8 + b^8 + b^8c^8 + c^8 + c^8d^8 + d^8 + d^8a^8

Apply AM ≥ GM on these 8 terms:

a8+a8b8+b8+b8c8+c8+c8d8+d8+d8a88(a24b24c24d24)18\frac{a^8 + a^8b^8 + b^8 + b^8c^8 + c^8 + c^8d^8 + d^8 + d^8a^8}{8} \geq \left( a^{24} b^{24} c^{24} d^{24} \right)^{\frac{1}{8}}

So:

a8+a8b8+b8+b8c8+c8+c8d8+d8+d8a88a3b3c3d3a^8 + a^8b^8 + b^8 + b^8c^8 + c^8 + c^8d^8 + d^8 + d^8a^8 \geq 8a^3b^3c^3d^3

Thus:

a8(1+b8)+b8(1+c8)+c8(1+d8)+d8(1+a8)8a3b3c3d3a^8(1 + b^8) + b^8(1 + c^8) + c^8(1 + d^8) + d^8(1 + a^8) \geq 8a^3b^3c^3d^3

Equality in AM = GM holds only if a=b=c=da = b = c = d, but since the values are 4 distinct positive numbers, strict inequality holds:

a8(1+b8)+b8(1+c8)+c8(1+d8)+d8(1+a8)>8a3b3c3d3a^8(1 + b^8) + b^8(1 + c^8) + c^8(1 + d^8) + d^8(1 + a^8) > 8a^3b^3c^3d^3


Ex9:

Let S=a+b+c+dS = a + b + c + d, where a,b,c,da, b, c, d are 4 positive numbers.

Prove that:

(Sa)(Sb)(Sc)(Sd)81abcd(S - a)(S - b)(S - c)(S - d) \geq 81 \cdot abcd


Solution:

Prove that:

(Sa)(Sb)(Sc)(Sd)81abcd(S - a)(S - b)(S - c)(S - d) \geq 81 \cdot abcd

Where S=a+b+c+dS = a + b + c + d


From the definition:

Sa=b+c+dS - a = b + c + d

Apply AM ≥ GM to {b,c,d}\{b, c, d\}:

b+c+d3(bcd)1/3b+c+d3(bcd)1/3Sa3(bcd)1/3\frac{b + c + d}{3} \geq (bcd)^{1/3} \Rightarrow b + c + d \geq 3(bcd)^{1/3} \Rightarrow S - a \geq 3(bcd)^{1/3}

Similarly:

Sb3(acd)1/3Sc3(abd)1/3Sd3(abc)1/3S - b \geq 3(acd)^{1/3} \\ S - c \geq 3(abd)^{1/3} \\ S - d \geq 3(abc)^{1/3}


Multiply all four inequalities:

(Sa)(Sb)(Sc)(Sd)34(bcdacdabdabc)1/3(S - a)(S - b)(S - c)(S - d) \geq 3^4 \cdot (bcd \cdot acd \cdot abd \cdot abc)^{1/3}

Simplifying the product inside the cube root:

=81(a3b3c3d3)1/3=81abcd= 81 \cdot (a^3 b^3 c^3 d^3)^{1/3} = 81 \cdot abcd


Thus, the inequality is proven:

(Sa)(Sb)(Sc)(Sd)81abcd(S - a)(S - b)(S - c)(S - d) \geq 81 \cdot abcd



Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

IOQM 2023 solutions