Algebra Theory - Inequalities

 Certainly! Here is the content from your image converted to text:

1. Basic operations on inequalities:
Given a > b

  • a + c > b + c

  • a - c > b - c

  • a c > b c  if  c > 0

  • a c < b c  if  c < 0

  • a/c > b/c  if  c > 0

  • a/c < b/c  if  c < 0

  • a² > b²  if  |a| > |b|  (Even power)

  • a² < b²  if  |a| < |b|

  • a³ > b³                 (Odd power)

If  a ≥ b  and  c ≥ d:

  • a + c ≥ b + d

  • a c ≥ b d  if  a, b, c, d > 0

Sure! Here’s the text extracted from your image:

2. Modulus inequality

x={xif x0xif x<0|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}

xxx

a+ba+b|a+b| \leq |a| + |b|

a1+a2+a3++ana1+a2++an

abab| |a| - |b| | \leq |a-b|

a+ba+b|a+b| \leq |a| + |b|

a+b=a+bab>0a+b<a+bab<0\begin{align*} |a+b| = |a| + |b| &\qquad ab > 0 \\ |a+b| < |a| + |b| &\qquad ab < 0 \end{align*}



Triangle Inequality

a+b>cb+c>ac+a>b\Rightarrow \quad \underline{a + b > c} \\ \quad b + c > a \\ \quad c + a > b ac<bbc<aab<c\Rightarrow |a - c| < b \\ \quad |b - c| < a \\ \quad |a - b| < c ab<c<a+b|a - b| < c < a + b {a+bc>0b+ca>0c+ab>0(a+bc)(b+ca)(c+ab)>0\begin{cases} a + b - c > 0 \\ b + c - a > 0 \\ c + a - b > 0 \end{cases} \Rightarrow (a + b - c)(b + c - a)(c + a - b) > 0


Here is the handwritten content from the image converted into clear, typed text:


Sum of Square Inequality

(x2)0\sum (x^2) \geq 0

Ex1. Prove that:

x2+y2+z2xy+yz+zxx^2 + y^2 + z^2 \geq xy + yz + zx

Proof:

x2+y2+z2xyyzzx0x^2 + y^2 + z^2 - xy - yz - zx \geq 0 2x2+2y2+2z22xy2yz2zx02x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2zx \geq 0 x22xy+y2+y22yz+z2+z22zx+x20x^2 - 2xy + y^2 + y^2 - 2yz + z^2 + z^2 - 2zx + x^2 \geq 0 (xy)2+(yz)2+(zx)20(x - y)^2 + (y - z)^2 + (z - x)^2 \geq 0 ()2+()2+()20(\cdot)^2 + (\cdot)^2 + (\cdot)^2 \geq 0

This uses the sum of squares identity, where the sum of non-negative squares is always non-negative, completing the proof. 

Here is the content from the image, transcribed and organized clearly:


Ex2. Prove that:

2016x2+2016y2+6z22(2013xy+3yz+3zx)2016x^2 + 2016y^2 + 6z^2 \geq 2(2013xy + 3yz + 3zx)

Steps:

2013x2+2013y22(2013xy)02013x^2 + 2013y^2 - 2(2013xy) \geq 0 3x2+3z22(3zx)03x^2 + 3z^2 - 2(3zx) \geq 0 3y2+3z22(3yz)03y^2 + 3z^2 - 2(3yz) \geq 0

Adding the three inequalities:

2013(xy)2+3(xz)2+3(yz)202013(x - y)^2 + 3(x - z)^2 + 3(y - z)^2 \geq 0 \quad \checkmark

Ex3. Prove that:

a2+5b2+4c24ab+4bca^2 + 5b^2 + 4c^2 \geq 4ab + 4bc

Ex4. Prove that (if x,y,z>0x, y, z > 0):

x2+yzy+z+y2+zxz+x+z2+xyx+yx+y+z\frac{x^2 + yz}{y + z} + \frac{y^2 + zx}{z + x} + \frac{z^2 + xy}{x + y} \geq x + y + z

Here is the transcribed content from your image:


3.

a2+4b24ab+b2+4c24bc0a^2 + 4b^2 - 4ab + b^2 + 4c^2 - 4bc \geq 0 (a2b)2+(b2c)20(a - 2b)^2 + (b - 2c)^2 \geq 0


4.

Prove:

x2+yzy+z+y2+zxz+x+z2+xyx+yx+y+z\frac{x^2 + yz}{y + z} + \frac{y^2 + zx}{z + x} + \frac{z^2 + xy}{x + y} \geq x + y + z

Steps:

Start with the expression:

x2+yzy+zx+y2+zxz+xy+z2+xyx+yz0\frac{x^2 + yz}{y + z} - x + \frac{y^2 + zx}{z + x} - y + \frac{z^2 + xy}{x + y} - z \geq 0

Now simplify each term:

x2+yzyxxzy+z+y2+zxzxyzz+x+z2+xyxyzxx+y\frac{x^2 + yz - yx - xz}{y + z} + \frac{y^2 + zx - zx - yz}{z + x} + \frac{z^2 + xy - xy - zx}{x + y} =(xy)(xz)y+z+(yz)(yx)z+x+(zx)(zy)x+y0= \frac{(x - y)(x - z)}{y + z} + \frac{(y - z)(y - x)}{z + x} + \frac{(z - x)(z - y)}{x + y} \geq 0

Multiply out the squares and rearrange:

(x2y^2)(x2z2)+(y2z2)(y2x2)+(z2x2)(z2y2)(x+y)(y+z)(z+x)0\frac{(x^2 - yz)(x^2 - z^2) + (y^2 - z^2)(y^2 - x^2) + (z^2 - x^2)(z^2 - y^2)}{(x + y)(y + z)(z + x)} \geq 0

Final step:

x4+y4+z4x2y2y2z2z2x2(x+y)(y+z)(z+x)0\frac{x^4 + y^4 + z^4 - x^2 y^2 - y^2 z^2 - z^2 x^2}{(x + y)(y + z)(z + x)} \geq 0



(x2y2)2+(y2z2)2+(z2x2)2(x+y)(y+z)(z+x)0\frac{(x^2 - y^2)^2 + (y^2 - z^2)^2 + (z^2 - x^2)^2}{(x + y)(y + z)(z + x)} \geq 0 By sum of squares: Nr0,Dr>0(and as per question)\Rightarrow \text{By sum of squares: } N^r \geq 0, \quad D^r > 0 \quad \text{(and as per question)} NrDr0\Rightarrow \frac{N^r}{D^r} \geq 0


Where NrN^r represents the numerator and DrD^r the denominator. Since the numerator is a sum of squares (always 0\geq 0) and the denominator is positive (due to x,y,z>0x, y, z > 0), the entire expression is non-negative.

Here is the content from the image, transcribed and organized clearly:


Quadratic Inequality

Let:

f(x)=ax2+bx+candb24ac<0f(x) = ax^2 + bx + c \quad \text{and} \quad b^2 - 4ac < 0

We want to solve:

ax2+bx+c>0ax^2 + bx + c > 0

Example:

y=x2+3x+2=(x+1)(x+2)y = x^2 + 3x + 2 = (x + 1)(x + 2)

Sign analysis:

  • x<2x < -2: ()()+(−)(−) \rightarrow +

  • 2<x<1-2 < x < -1: (+)()(+)(−) \rightarrow -

  • x>1x > -1: (+)(+)+(+)(+) \rightarrow +


General Case:

y=(xα)(xβ),α<βy = (x - \alpha)(x - \beta), \quad \alpha < \beta

Sign table:

  • x>βx > \beta: (+)(+)+(+)(+) \rightarrow +

  • α<x<β\alpha < x < \beta: (+)()(+)(−) \rightarrow -

  • x<αx < \alpha: ()()+(−)(−) \rightarrow +


Conclusion:

If a>0a > 0, then:

ax2+bx+c will be negative between the roots.ax^2 + bx + c \text{ will be negative between the roots.}

Also:

  • If b24ac<0b^2 - 4ac < 0, then no real roots, and:

    ax2+bx+c>0ax^2 + bx + c > 0
  • If b24ac0b^2 - 4ac \leq 0, and a>0a > 0, then:

    ax2+bx+c0ax^2 + bx + c \geq 0



(1) Prove that:

a2+ac+c23b(ab+c)a^2 + ac + c^2 \geq 3b(a - b + c)


Rewriting the inequality:

a2+ac+c23ab+3b23bc0a^2 + ac + c^2 - 3ab + 3b^2 - 3bc \geq 0

Group terms:

3b23(a+c)b+a2+ac+c203b^2 - 3(a + c)b + a^2 + ac + c^2 \geq 0

This is a quadratic in bb:

3b23(a+c)b+(a2+ac+c2)03b^2 - 3(a + c)b + (a^2 + ac + c^2) \geq 0


Discriminant approach:

Let:

D=9(a+c)24(3)(a2+ac+c2)D = 9(a + c)^2 - 4(3)(a^2 + ac + c^2) =9a2+9c2+18ac12a212ac12c2= 9a^2 + 9c^2 + 18ac - 12a^2 - 12ac - 12c^2 =3a23c2+6ac=3(ac)2= -3a^2 - 3c^2 + 6ac = -3(a - c)^2

Since (ac)20(a - c)^2 \geq 0, we have:

3(ac)20D0-3(a - c)^2 \leq 0 \Rightarrow D \leq 0


Conclusion:

3b23(a+c)b+a2+ac+c203b^2 - 3(a + c)b + a^2 + ac + c^2 \geq 0

Thus, the inequality is proven.


 AM ≥ GM ≥ HM Inequality


Definitions:

Let a1,a2,,ana_1, a_2, \ldots, a_n be positive real numbers.

  • Arithmetic Mean (AM):

    AM=a1+a2+a3++ann\text{AM} = \frac{a_1 + a_2 + a_3 + \cdots + a_n}{n}
  • Geometric Mean (GM):

    GM=(a1a2a3an)1/n\text{GM} = \left( a_1 a_2 a_3 \cdots a_n \right)^{1/n}
  • Harmonic Mean (HM):

    HM=n1a1+1a2+1a3++1an\text{HM} = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \cdots + \frac{1}{a_n}}

For two numbers aa and bb:

  • AM=a+b2\text{AM} = \frac{a + b}{2}
  • GM=ab\text{GM} = \sqrt{ab}
  • HM=21a+1b=2aba+b\text{HM} = \frac{2}{\frac{1}{a} + \frac{1}{b}} = \frac{2ab}{a + b}

Inequality Summary:

If a1,a2,,ana_1, a_2, \ldots, a_n are all positive numbers, then:

AMGMHM\text{AM} \geq \text{GM} \geq \text{HM}

Equality holds if and only if:

a1=a2==an=kAM=GM=HM=ka_1 = a_2 = \cdots = a_n = k \quad \Rightarrow \quad \text{AM} = \text{GM} = \text{HM} = k



Example: Numbers 1, 2, 4

Arithmetic Mean (AM):

AM(1,2,4)=1+2+43=732.33\text{AM}(1, 2, 4) = \frac{1 + 2 + 4}{3} = \frac{7}{3} \approx 2.33

Geometric Mean (GM):

GM(1,2,4)=(124)1/3=81/3=2\text{GM}(1, 2, 4) = (1 \cdot 2 \cdot 4)^{1/3} = 8^{1/3} = 2

Harmonic Mean (HM):

HM(1,2,4)=311+12+14=31+0.5+0.25=31.75=1271.71\text{HM}(1, 2, 4) = \frac{3}{\frac{1}{1} + \frac{1}{2} + \frac{1}{4}} = \frac{3}{1 + 0.5 + 0.25} = \frac{3}{1.75} = \frac{12}{7} \approx 1.71


Proof of AM ≥ GM

Let aa, bb be positive real numbers.

(ab)20(\sqrt{a} - \sqrt{b})^2 \geq 0 a+b2ab0a+b2aba + b - 2\sqrt{ab} \geq 0 \Rightarrow a + b \geq 2\sqrt{ab}

Divide both sides by 2:

a+b2ab\frac{a + b}{2} \geq \sqrt{ab}

Hence:

AMGM\text{AM} \geq \text{GM}

(1) Prove that:

ab+bc+ca3where a,b,c>0\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq 3 \quad \text{where } a, b, c > 0

Using the AM ≥ GM inequality on

ab,bc,ca\frac{a}{b}, \quad \frac{b}{c}, \quad \frac{c}{a}

By the AM-GM inequality:

ab+bc+ca3(abbcca)1/3\frac{\frac{a}{b} + \frac{b}{c} + \frac{c}{a}}{3} \geq \left( \frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a} \right)^{1/3}

Simplify the right-hand side:

(abbcca)1/3=(1)1/3=1\left( \frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a} \right)^{1/3} = (1)^{1/3} = 1

So:

ab+bc+ca31ab+bc+ca3\frac{\frac{a}{b} + \frac{b}{c} + \frac{c}{a}}{3} \geq 1 \Rightarrow \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq 3

✅ Hence, the inequality is proven using AM ≥ GM for positive real numbers.



(2) Given:

Let a,b,c,da, b, c, d be positive real numbers such that:

abcd=1abcd = 1

Then prove that:

(1+a)(1+b)(1+c)(1+d)16(1 + a)(1 + b)(1 + c)(1 + d) \geq 16


Proof using AM ≥ GM:

Step 1:

Apply AM ≥ GM on the pair (1,a)(1, a):

1+a2a1+a2a(✓)\frac{1 + a}{2} \geq \sqrt{a} \Rightarrow 1 + a \geq 2\sqrt{a} \quad \text{(✓)}

Similarly:

  • 1+b2b(✓)1 + b \geq 2\sqrt{b} \quad \text{(✓)}

  • 1+c2c(✓)1 + c \geq 2\sqrt{c} \quad \text{(✓)}

  • 1+d2d(✓)1 + d \geq 2\sqrt{d} \quad \text{(✓)}


Step 2:

Multiply all four inequalities:

(1+a)(1+b)(1+c)(1+d)24abcd(1 + a)(1 + b)(1 + c)(1 + d) \geq 2^4 \sqrt{abcd}

Since abcd=1abcd = 1, we have abcd=1=1\sqrt{abcd} = \sqrt{1} = 1

So:

(1+a)(1+b)(1+c)(1+d)16(1 + a)(1 + b)(1 + c)(1 + d) \geq 16


Hence proved.

Here is the transcribed and organized content from the image:


(3) Let a1,a2,,ana_1, a_2, \ldots, a_n be positive numbers.

Prove that:

a1a2+a1a3++a1an+a2a3+a2a4++a2an++an1an\sqrt{a_1 a_2} + \sqrt{a_1 a_3} + \cdots + \sqrt{a_1 a_n} + \sqrt{a_2 a_3} + \sqrt{a_2 a_4} + \cdots + \sqrt{a_2 a_n} + \cdots + \sqrt{a_{n-1} a_n} n12(a1+a2+a3++an)\leq \frac{n - 1}{2} (a_1 + a_2 + a_3 + \cdots + a_n)


Proof using AM ≥ GM:

From AM ≥ GM:

a1+a22a1a2\frac{a_1 + a_2}{2} \geq \sqrt{a_1 a_2} \quad \text{✓} a1+a32a1a3\frac{a_1 + a_3}{2} \geq \sqrt{a_1 a_3} \quad \text{✓} \vdots an1+an2an1an\frac{a_{n-1} + a_n}{2} \geq \sqrt{a_{n-1} a_n} \quad \text{✓}


Adding all these inequalities:

Each pair (ai+aj)/2(a_i + a_j)/2 appears once for each square root term, and so:

(a1+a2)+(a1+a3)++(a1+an)+(a2+a3)++(an1+an)21i<jnaiaj\frac{(a_1 + a_2) + (a_1 + a_3) + \cdots + (a_1 + a_n) + (a_2 + a_3) + \cdots + (a_{n-1} + a_n)}{2} \geq \sum_{1 \le i < j \le n} \sqrt{a_i a_j}

There are n(n1)2\frac{n(n-1)}{2} such square root terms on the RHS, and each aia_i appears n1n - 1 times in the sum on the LHS.

So:

(n1)(a1+a2++an)21i<jnaiaj\frac{(n-1)(a_1 + a_2 + \cdots + a_n)}{2} \geq \sum_{1 \le i < j \le n} \sqrt{a_i a_j}


Here is the transcribed and organized content from the image:


(IV)

If a+b+c=3a + b + c = 3, where a,b,c>0a, b, c > 0,

Find:

(a) The maximum value of abcabc
(b) The maximum value of a2b3ca^2 b^3 c


(a) Max value of abcabc

By AM ≥ GM for a,b,ca, b, c:

a+b+c3(abc)1/333(abc)1/31(abc)1/3abc1\frac{a + b + c}{3} \geq (abc)^{1/3} \Rightarrow \frac{3}{3} \geq (abc)^{1/3} \Rightarrow 1 \geq (abc)^{1/3} \Rightarrow abc \leq 1

✅ So, the maximum value of abcabc is:

1\boxed{1}


(b) Max value of a2b3ca^2 b^3 c

We are given:

a+b+c=3a + b + c = 3

Write the sum as:

a2+a2+b3+b3+b3+c=3\frac{a}{2} + \frac{a}{2} + \frac{b}{3} + \frac{b}{3} + \frac{b}{3} + c = 3

Apply AM ≥ GM on the 6 terms:

{a2,a2,b3,b3,b3,c}\left\{ \frac{a}{2}, \frac{a}{2}, \frac{b}{3}, \frac{b}{3}, \frac{b}{3}, c \right\} a2+a2+b3+b3+b3+c6(a2a2b3b3b3c)1/6\frac{\frac{a}{2} + \frac{a}{2} + \frac{b}{3} + \frac{b}{3} + \frac{b}{3} + c}{6} \geq \left( \frac{a}{2} \cdot \frac{a}{2} \cdot \frac{b}{3} \cdot \frac{b}{3} \cdot \frac{b}{3} \cdot c \right)^{1/6} a+b+c6(a2b3c2233)1/6\frac{a + b + c}{6} \geq \left( \frac{a^2 b^3 c}{2^2 \cdot 3^3} \right)^{1/6} 36(a2b3c2233)1/6(12)6a2b3c2233\frac{3}{6} \geq \left( \frac{a^2 b^3 c}{2^2 \cdot 3^3} \right)^{1/6} \Rightarrow \left( \frac{1}{2} \right)^6 \geq \frac{a^2 b^3 c}{2^2 \cdot 3^3} a2b3c3322=274\Rightarrow a^2 b^3 c \leq \frac{3^3}{2^2} = \frac{27}{4}

⚠ Small correction:
The denominator should be:

2233=427=108a2b3c27162^2 \cdot 3^3 = 4 \cdot 27 = 108 \Rightarrow a^2 b^3 c \leq \frac{27}{16}

✅ So, the maximum value of a2b3ca^2 b^3 c is:

2716\boxed{\frac{27}{16}}



Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics