Algebra theory inequalities

Power mean inequality:

Power Mean 

For real numbers x1,x2,,xn0x_1, x_2, \ldots, x_n \ge 0 and real p0p \ne 0, the power mean of order pp is:

Mp=(x1p+x2p++xnpn)1/pM_p = \left( \frac{x_1^p + x_2^p + \cdots + x_n^p}{n} \right)^{1/p}

Power Mean Inequality

If p<qp < q, then:

(x1p+x2p++xnpn)1/p(x1q+x2q++xnqn)1/q\left( \frac{x_1^p + x_2^p + \cdots + x_n^p}{n} \right)^{1/p} \le \left( \frac{x_1^q + x_2^q + \cdots + x_n^q}{n} \right)^{1/q}

with equality if and only if x1=x2==xnx_1 = x_2 = \cdots = x_n.


Example (n = 3, p = 2, q = 3)

Let’s say:

x1,x2,x30x_1, x_2, x_3 \ge 0

Then the power mean inequality says:

(x12+x22+x323)1/2(x13+x23+x333)1/3\left( \frac{x_1^2 + x_2^2 + x_3^2}{3} \right)^{1/2} \le \left( \frac{x_1^3 + x_2^3 + x_3^3}{3} \right)^{1/3}



Ex1) Prove that

a4+b4+c4abc(a+b+c)a^4 + b^4 + c^4 \ge abc(a + b + c)

Solution:

PM4=(a4+b4+c43)1/4\text{PM}_4 = \left( \frac{a^4 + b^4 + c^4}{3} \right)^{1/4} PM1=(a+b+c3)\text{PM}_1 = \left( \frac{a + b + c}{3} \right)

PM4PM1(a4+b4+c43)1/4a+b+c3\text{PM}_4 \ge \text{PM}_1 \quad \Rightarrow \quad \left( \frac{a^4 + b^4 + c^4}{3} \right)^{1/4} \ge \frac{a + b + c}{3}

Multiplying both sides by 3 and raising both sides to the power 4:

a4+b4+c4(a+b+c)(a+b+c3)3a^4 + b^4 + c^4 \ge (a + b + c) \left( \frac{a + b + c}{3} \right)^3


Using AM ≥ GM for the set {a,b,c}\{a, b, c\}:

a+b+c3(abc)1/3\frac{a + b + c}{3} \ge (abc)^{1/3}

Raising both sides to the power 3:

(a+b+c3)3abc\left( \frac{a + b + c}{3} \right)^3 \ge abc

Then multiplying both sides by a+b+ca + b + c:

(a+b+c)(a+b+c3)3abc(a+b+c)(a + b + c) \left( \frac{a + b + c}{3} \right)^3 \ge abc(a + b + c)

Therefore:

a4+b4+c4abc(a+b+c)a^4 + b^4 + c^4 \ge abc(a + b + c)


Hence Proved.

Ex2:

Prove that:

2S2Sa+2S2Sb+2S2Sc92\frac{2S}{2S - a} + \frac{2S}{2S - b} + \frac{2S}{2S - c} \ge \frac{9}{2}

where

S=a+b+c2S = \frac{a + b + c}{2}


Solution:


a+b+cb+c+a+b+ca+c+a+b+ca+b92\frac{a + b + c}{b + c} + \frac{a + b + c}{a + c} + \frac{a + b + c}{a + b} \ge \frac{9}{2}

This implies:

1b+c+1a+c+1a+b92(a+b+c)\frac{1}{b + c} + \frac{1}{a + c} + \frac{1}{a + b} \ge \frac{9}{2(a + b + c)}


Then, applying Power Mean inequality on the values 1b+c,1a+c,1a+b\frac{1}{b + c}, \frac{1}{a + c}, \frac{1}{a + b}:

PM1=((1b+c)1+(1a+c)1+(1a+b)13)1/1\text{PM}_1 = \left( \frac{ \left( \frac{1}{b + c} \right)^1 + \left( \frac{1}{a + c} \right)^1 + \left( \frac{1}{a + b} \right)^1 }{3} \right)^{1/1}


PM1=((1b+c)1+(1a+c)1+(1a+b)13)1\text{PM}_{-1} = \left( \frac{\left( \frac{1}{b + c} \right)^1 + \left( \frac{1}{a + c} \right)^1 + \left( \frac{1}{a + b} \right)^1}{3} \right)^{-1} =13[1b+c+1a+c+1a+b]= \frac{1}{3} \left[ \frac{1}{b + c} + \frac{1}{a + c} + \frac{1}{a + b} \right] PM1=((1b+c)1+(1a+c)1+(1a+b)13)1\text{PM}_{-1} = \left( \frac{ \left( \frac{1}{b + c} \right)^{-1} + \left( \frac{1}{a + c} \right)^{-1} + \left( \frac{1}{a + b} \right)^{-1} }{3} \right)^{-1} =(b+c+a+c+a+b3)1= \left( \frac{b + c + a + c + a + b}{3} \right)^{-1} =32(a+b+c)= \frac{3}{2(a + b + c)}



Starting with the power mean inequality:

PM1PM1\text{PM}_{-1} \le \text{PM}_1

Substituting the expressions:

32(a+b+c)13(1b+c+1c+a+1a+b)\frac{3}{2(a + b + c)} \le \frac{1}{3} \left( \frac{1}{b + c} + \frac{1}{c + a} + \frac{1}{a + b} \right)

Multiplying both sides by 3:

92(a+b+c)1b+c+1c+a+1a+b\frac{9}{2(a + b + c)} \le \frac{1}{b + c} + \frac{1}{c + a} + \frac{1}{a + b}

Which implies:

2(a+b+c)91b+c+1c+a+1a+b2(a + b + c) \ge \frac{9}{\frac{1}{b + c} + \frac{1}{c + a} + \frac{1}{a + b}}


Hence proved.

Another simpler solution:

Applying the Arithmetic Mean ≥ Harmonic Mean (AM ≥ HM) inequality on the values 

b+c,  c+a,  a+bb + c, \; c + a, \; a + b:

(b+c)+(c+a)+(a+b)331b+c+1c+a+1a+b\frac{(b + c) + (c + a) + (a + b)}{3} \ge \frac{3}{\frac{1}{b + c} + \frac{1}{c + a} + \frac{1}{a + b}}


Ex3:

Given:

a2+b2+c2=27,where a,b,c>0a^2 + b^2 + c^2 = 27,\quad \text{where } a, b, c > 0

Prove that:

a3+b3+c381a^3 + b^3 + c^3 \ge 81


Solution:
PM2 = [(a^2 + b^2 + c^2)/3]^(1/2)
PM3 = [(a^3 + b^3 + c^3)/3]^(1/3)
PM3 >= PM2 = (27/3)^1/2 = 3
[(a^3 + b^3 + c^3)/3]^(1/3) >= 3
=> (a^3 + b^3 + c^3)/3 >= 3^3 = 27
=> (a^3 + b^3 + c^3) >= 27*3 = 81 H.P.



Chebyshev Inequality: (Intuitive explanation)


Given sequences of positive numbers in increasing order:
a1,a2,a3,,ana_1, a_2, a_3, \ldots, a_n
b1,b2,b3,,bnb_1, b_2, b_3, \ldots, b_n (in increasing order)


(a1+a2+a3++ann)(b1+b2+b3++bnn)a1b1+a2b2+a3b3++anbnn\left( \frac{a_1 + a_2 + a_3 + \cdots + a_n}{n} \right) \left( \frac{b_1 + b_2 + b_3 + \cdots + b_n}{n} \right) \leq \frac{a_1 b_1 + a_2 b_2 + a_3 b_3 + \cdots + a_n b_n}{n}

Another way to express the same result:

Let

aˉ=1ni=1nai,bˉ=1ni=1nbi,ab=1ni=1naibi.\bar{a} = \frac{1}{n} \sum_{i=1}^{n} a_i,\quad \bar{b} = \frac{1}{n} \sum_{i=1}^{n} b_i,\quad \overline{ab} = \frac{1}{n} \sum_{i=1}^{n} a_i b_i.

Then the inequality is simply

aˉbˉab\bar{a} \, \bar{b} \leq \overline{ab}

whenever the two lists are sorted the same way (both non-decreasing or both non-increasing).


A specific version of this (when both sequences are the same) yields:
Square of mean <= Mean of squares


(a1+a2+a3++ann)2a12+a22+a32++an2n



Ex1:
Prove that

(a2+b2+c2)(a3+b3+c3)3(a5+b5+c5)(a^2 + b^2 + c^2)(a^3 + b^3 + c^3) \leq 3(a^5 + b^5 + c^5)


Given:
Assume the ordering (also given a,b,c > 0):

a2b2c2anda3b3c3a^2 \leq b^2 \leq c^2 \quad \text{and} \quad a^3 \leq b^3 \leq c^3

Then use the Chebyshev inequality:

(a2+b2+c23)(a3+b3+c33)(a5+b5+c53)\left( \frac{a^2 + b^2 + c^2}{3} \right) \left( \frac{a^3 + b^3 + c^3}{3} \right) \leq \left( \frac{a^5 + b^5 + c^5}{3} \right)

Multiply both sides by 33 to get the desired inequality.

Ex2:


Prove that:

a8+b8+c8(a2+b2+c2)(a6+b6+c6)3a^8 + b^8 + c^8 \geq \frac{(a^2 + b^2 + c^2)(a^6 + b^6 + c^6)}{3}

And from there also prove:

a8+b8+c8a3b3c3(1a+1b+1c)
Solution:
First part is straightforward application of Chebyshev Inequality as shown in the last example.
Then:

Applying the AM ≥ GM inequality to the terms 

a6,b6,c6a^6, b^6, c^6, we have:

a6+b6+c63a6b6c63=a2b2c2\frac{a^6 + b^6 + c^6}{3} \geq \sqrt[3]{a^6 b^6 c^6} = a^2 b^2 c^2

Multiplying both sides by a2+b2+c2a^2 + b^2 + c^2, we get new bound on RHS.

a6+b6+c63(a2+b2+c2)a2b2c2(a2+b2+c2)\frac{a^6 + b^6 + c^6}{3} \cdot (a^2 + b^2 + c^2) \geq a^2 b^2 c^2 (a^2 + b^2 + c^2)

Now, assume abca \geq b \geq c. By the Rearrangement Inequality, we know:

a2+b2+c2ab+bc+caa^2 + b^2 + c^2 \geq ab + bc + ca

Therefore:

a2b2c2(a2+b2+c2)a2b2c2(ab+bc+ca)a^2 b^2 c^2 (a^2 + b^2 + c^2) \geq a^2 b^2 c^2 (ab + bc + ca)

Now observe that:

a2b2c2(ab+bc+ca)=a3b3c3(1a+1b+1c)a^2 b^2 c^2 (ab + bc + ca) = a^3 b^3 c^3 \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)

So, we conclude:

a6+b6+c63(a2+b2+c2)a3b3c3(1a+1b+1c)

H.P.



Cauchy–Schwarz Inequality

a1,a2,a3,,an;b1,b2,b3,,bna_1, a_2, a_3, \ldots, a_n \quad ; \quad b_1, b_2, b_3, \ldots, b_n

are real numbers.

(a1b1+a2b2+a3b3++anbn)2(a12+a22+a32++an2)(b12+b22+b32++bn2)(a_1b_1 + a_2b_2 + a_3b_3 + \ldots + a_n b_n)^2 \leq (a_1^2 + a_2^2 + a_3^2 + \ldots + a_n^2)(b_1^2 + b_2^2 + b_3^2 + \ldots + b_n^2)

Equality will hold if

a1b1=a2b2==anbn\frac{a_1}{b_1} = \frac{a_2}{b_2} = \ldots = \frac{a_n}{b_n}


Important:
Unlike Chebyshev inequality, this doesn't expect the numbers to be in increasing order.

Let's see a simple example with 2 sequences of length 2:



Cauchy-Schwarz Inequality Example (Length 2 Sequences)

Let a=(a1,a2)\mathbf{a} = (a_1, a_2) and b=(b1,b2)\mathbf{b} = (b_1, b_2).

The Cauchy-Schwarz inequality states:

(a12+a22)(b12+b22)(a1b1+a2b2)2(a_1^2 + a_2^2)(b_1^2 + b_2^2) \geq (a_1 b_1 + a_2 b_2)^2

Step 1: Expand both sides

Left-hand side:

(a12+a22)(b12+b22)=a12b12+a12b22+a22b12+a22b22(a_1^2 + a_2^2)(b_1^2 + b_2^2) = a_1^2 b_1^2 + a_1^2 b_2^2 + a_2^2 b_1^2 + a_2^2 b_2^2

Right-hand side:

(a1b1+a2b2)2=a12b12+2a1a2b1b2+a22b22(a_1 b_1 + a_2 b_2)^2 = a_1^2 b_1^2 + 2 a_1 a_2 b_1 b_2 + a_2^2 b_2^2

Step 2: Subtract right-hand side from left-hand side

(a12b12+a12b22+a22b12+a22b22)(a12b12+2a1a2b1b2+a22b22)=a12b22+a22b122a1a2b1b2\begin{align*} & (a_1^2 b_1^2 + a_1^2 b_2^2 + a_2^2 b_1^2 + a_2^2 b_2^2) - (a_1^2 b_1^2 + 2 a_1 a_2 b_1 b_2 + a_2^2 b_2^2) \\ & = a_1^2 b_2^2 + a_2^2 b_1^2 - 2 a_1 a_2 b_1 b_2 \end{align*}

Step 3: Factor the result

a12b22+a22b122a1a2b1b2=(a1b2a2b1)2a_1^2 b_2^2 + a_2^2 b_1^2 - 2 a_1 a_2 b_1 b_2 = (a_1 b_2 - a_2 b_1)^2

Conclusion:

(a12+a22)(b12+b22)(a1b1+a2b2)2=(a1b2a2b1)20(a_1^2 + a_2^2)(b_1^2 + b_2^2) - (a_1 b_1 + a_2 b_2)^2 = (a_1 b_2 - a_2 b_1)^2 \geq 0

Since the square of any real number is non-negative, the inequality is always true.


Ex1:

 Prove that

ab+bc+ca(a+b+c)2ab+bc+ca\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq \frac{(a + b + c)^2}{ab + bc + ca} (a+b+c)2(ab+bc+ca)(ab+bc+ca)(a + b + c)^2 \leq \left( \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \right)(ab + bc + ca) [(ab)2+(bc)2+(ca)2][(ab)2+(bc)2+(ca)2]\leq \left[ \left( \frac{a}{b} \right)^2 + \left( \frac{b}{c} \right)^2 + \left( \frac{c}{a} \right)^2 \right] \left[ (\sqrt{ab})^2 + (\sqrt{bc})^2 + (\sqrt{ca})^2 \right] a1,a2,a3withab,bc,caa_1, a_2, a_3 \quad \text{with} \quad \frac{a}{\sqrt{b}}, \frac{b}{\sqrt{c}}, \frac{c}{\sqrt{a}} b1,b2,b3withab,bc,cab_1, b_2, b_3 \quad \text{with} \quad \sqrt{ab}, \sqrt{bc}, \sqrt{ca} (a1b1+a2b2+a3b3)2(a12+a22+a32)(b12+b22+b32)(a_1 b_1 + a_2 b_2 + a_3 b_3)^2 \leq (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) (a+b+c)2(ab+bc+ca)(ab+bc+ca)(a + b + c)^2 \leq \left( \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \right)(ab + bc + ca)


Ex2.


Prove that

(a3b+b3c+c3d+d3a)(ab3+bc2+cd3+da3)(a2b2+b2c2+c2d2+d2a2)2(a^3b + b^3c + c^3d + d^3a)(ab^3 + bc^2 + cd^3 + da^3) \geq (a^2b^2 + b^2c^2 + c^2d^2 + d^2a^2)^2

from there prove that

(a3b+b3c+c3d+d3a)(ab3+bc2+cd3+da3)16(abcd)2(a^3b + b^3c + c^3d + d^3a)(ab^3 + bc^2 + cd^3 + da^3) \geq 16(abcd)^2


Solution:
First part:

Apply Cauchy–Schwarz to the 4-tuples

x=(a3b, b3c, c3d, d3a),y=(ab3, bc3, cd3, da3)x=\big(\sqrt{a^{3}b},\ \sqrt{b^{3}c},\ \sqrt{c^{3}d},\ \sqrt{d^{3}a}\big),\qquad y=\big(\sqrt{ab^{3}},\ \sqrt{bc^{3}},\ \sqrt{cd^{3}},\ \sqrt{da^{3}}\big)

(for a,b,c,d0a,b,c,d\ge 0). Then

(xi2)(yi2)    (xiyi)2.\big(\sum x_i^2\big)\big(\sum y_i^2\big)\;\ge\; \big(\sum x_i y_i\big)^2 .

Here,

xi2=a3b+b3c+c3d+d3a,yi2=ab3+bc3+cd3+da3,\sum x_i^2=a^3b+b^3c+c^3d+d^3a,\qquad \sum y_i^2=ab^3+bc^3+cd^3+da^3,

and

xiyi=a3bab3+=a2b2+b2c2+c2d2+d2a2.\sum x_i y_i =\sqrt{a^{3}b\cdot ab^{3}}+\cdots = a^2 b^2+b^2 c^2+c^2 d^2+d^2 a^2 .

Therefore

(a3b+b3c+c3d+d3a)(ab3+bc3+cd3+da3)    (a2b2+b2c2+c2d2+d2a2)2,(a^3 b + b^3 c + c^3 d + d^3 a)\,(ab^3 + bc^3 + cd^3 + da^3) \;\ge\; \big(a^2 b^2 + b^2 c^2 + c^2 d^2 + d^2 a^2\big)^2,

as required.

For the second part, simply do A.M >= G.M. for the terms on RHS.


Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

IOQM 2023 solutions