Algebra theory rearrangement inequality

General form or Rearrangement inequality:
if x1 >= x2 >= ... xn
also, y1 >= y2 > = .. yn
then
x1.y1 + x2.y2 + ... xn.yn >= any other xy pairing(for e.g. x1y2 + x2y1 + ... xn.yn)

 Rearrangement Inequality

Given:

abca \leq b \leq c [abcabc][abccba]\begin{bmatrix} a & b & c \\ a & b & c \end{bmatrix} \geq \begin{bmatrix} a & b & c \\ c & b & a \end{bmatrix} a2+b2+c2ac+b2+aca^2 + b^2 + c^2 \geq ac + b^2 + ac a2+b2+c2b2+2aca^2 + b^2 + c^2 \geq b^2 + 2ac

Example with Boxes and Values
(₹10) B₁ — 2
(₹50) B₂ — 3
(₹100) B₃ — 5

235Max532Min\begin{array}{ccc} 2 & 3 & 5 \Rightarrow \text{Max} \\ 5 & 3 & 2 \Rightarrow \text{Min} \end{array}

Conclusion:
If abca \leq b \leq c are 3 positive numbers,
then a2+b2+c2a^2 + b^2 + c^2 will always be greater
than any other rearrangement of a,b,ca, b, c.


(1) Prove that

a2+b2+c2ab+bc+caa^2 + b^2 + c^2 \geq ab + bc + ca

Given:

abc(any other arrangement)a \leq b \leq c \quad \text{(any other arrangement)} [abcabc][abcbca]\begin{bmatrix} a & b & c \\ a & b & c \end{bmatrix} \geq \begin{bmatrix} a & b & c \\ b & c & a \end{bmatrix} a2+b2+c2ab+bc+caa^2 + b^2 + c^2 \geq ab + bc + ca




(2) Prove that a,b,c0a, b, c \geq 0

a3+b3+c3a2b+b2c+c2aa^3 + b^3 + c^3 \geq a^2 b + b^2 c + c^2 a

Given:

abca2b2c2a \leq b \leq c \Rightarrow a^2 \leq b^2 \leq c^2 [abca2b2c2][abcc2a2b2]\begin{bmatrix} a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix} \geq \begin{bmatrix} a & b & c \\ c^2 & a^2 & b^2 \end{bmatrix} a3+b3+c3ac2+ba2+cb2a^3 + b^3 + c^3 \geq a c^2 + b a^2 + c b^2



(3)

ab+c+bc+a+ca+b32\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \geq \frac{3}{2}

Let abca \leq b \leq c

Then:

1b+c1a+c1a+b\frac{1}{b + c} \leq \frac{1}{a + c} \leq \frac{1}{a + b}
[abc][abc]paired with[1b+c1a+c1a+b]\begin{bmatrix} a & b & c \end{bmatrix} \geq \begin{bmatrix} a & b & c \end{bmatrix} \quad \text{paired with} \quad \begin{bmatrix} \frac{1}{b + c} & \frac{1}{a + c} & \frac{1}{a + b} \end{bmatrix}

Using Rearrangement Inequality:

ab+c+ba+c+ca+baa+c+ba+b+cb+c(1)\frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b} \geq \frac{a}{a + c} + \frac{b}{a + b} + \frac{c}{b + c} \tag{1} ab+c+ba+c+ca+baa+b+bb+c+ca+c(2)\frac{a}{b + c} + \frac{b}{a + c} + \frac{c}{a + b} \geq \frac{a}{a + b} + \frac{b}{b + c} + \frac{c}{a + c} \tag{2}

Adding (1) and (2):

2(ab+c+bc+a+ca+b)32 \left( \frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \right) \geq 3 ab+c+bc+a+ca+b32\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \geq \frac{3}{2}

(4):

Prove that

ab+bc+caa+b+c\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq a + b + c

given that abc=1abc = 1

Solution:
Assume
a/b <= b/c <= c/a

Then:

(ab)1/3(bc)1/3(ca)1/3(ab)2/3(bc)2/3(ca)2/3\left( \frac{a}{b} \right)^{1/3} \leq \left( \frac{b}{c} \right)^{1/3} \leq \left( \frac{c}{a} \right)^{1/3} \quad \left( \frac{a}{b} \right)^{2/3} \leq \left( \frac{b}{c} \right)^{2/3} \leq \left( \frac{c}{a} \right)^{2/3} [(ab)1/3(bc)1/3(ca)1/3(ab)2/3(bc)2/3(ca)2/3][(ab)1/3(bc)1/3(ca)1/3(ca)2/3(ab)2/3(bc)2/3]\left[ \begin{array}{ccc} \left( \frac{a}{b} \right)^{1/3} & \left( \frac{b}{c} \right)^{1/3} & \left( \frac{c}{a} \right)^{1/3} \\ \left( \frac{a}{b} \right)^{2/3} & \left( \frac{b}{c} \right)^{2/3} & \left( \frac{c}{a} \right)^{2/3} \end{array} \right] \geq \left[ \begin{array}{ccc} \left( \frac{a}{b} \right)^{1/3} & \left( \frac{b}{c} \right)^{1/3} & \left( \frac{c}{a} \right)^{1/3} \\ \left( \frac{c}{a} \right)^{1/3} & \left( \frac{a}{b} \right)^{1/3} & \left( \frac{b}{c} \right)^{1/3} \end{array} \right] ab+bc+ca(ab)1/3(ca)2/3+(bca2b2)1/3+(cab2c2)1/3\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \geq \left( \frac{a}{b} \right)^{1/3} \left( \frac{c}{a} \right)^{2/3} + \left( \frac{b}{c} \cdot \frac{a^2}{b^2} \right)^{1/3} + \left( \frac{c}{a} \cdot \frac{b^2}{c^2} \right)^{1/3} (ac2ba2)1/3+(ba2cb2)1/3+(cb2ac2)1/3\geq \left( \frac{a c^2}{b a^2} \right)^{1/3} + \left( \frac{b a^2}{c b^2} \right)^{1/3} + \left( \frac{c b^2}{a c^2} \right)^{1/3} (c2ab)1/3+(a2bc)1/3+(b2ac)1/3\geq \left( \frac{c^2}{ab} \right)^{1/3} + \left( \frac{a^2}{bc} \right)^{1/3} + \left( \frac{b^2}{ac} \right)^{1/3} (c3)1/3+(a3)1/3+(b3)1/3\geq \left( c^3 \right)^{1/3} + \left( a^3 \right)^{1/3} + \left( b^3 \right)^{1/3} c+a+b\geq c + a + b



(5) Find min of

sin3(x)cos(x)+cos3(x)sin(x),x(0,π2)\frac{\sin^3(x)}{\cos(x)} + \frac{\cos^3(x)}{\sin(x)}, \quad x \in \left(0, \frac{\pi}{2} \right)

Using identity:

sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1 sinxcosxsin3xcos3xand1sinx1cosx\sin x \leq \cos x \Rightarrow \sin^3 x \leq \cos^3 x \quad \text{and} \quad \frac{1}{\sin x} \geq \frac{1}{\cos x} [sin3xcosxcos3xsinx][sin3xsinxcos3xcosx]\left[ \begin{array}{cc} \frac{\sin^3 x}{\cos x} & \frac{\cos^3 x}{\sin x} \end{array} \right] \geq \left[ \begin{array}{cc} \frac{\sin^3 x}{\sin x} & \frac{\cos^3 x}{\cos x} \end{array} \right] sin3xcosx+cos3xsinxsin2x+cos2x\frac{\sin^3 x}{\cos x} + \frac{\cos^3 x}{\sin x} \geq \sin^2 x + \cos^2 x sin3xcosx+cos3xsinx1

Answer = 1

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

IOQM 2023 solutions