Algebra Theory - Recurrence Relations - 2

Now, let's shift our focus to first-order non-linear recurrence relations.

1. First-order non-linear recurrence relation - Type 1.


an=αan1βan1+γa_n = \frac{\alpha a_{n-1}}{\beta a_{n-1} + \gamma} βanan1+γan=αan1\beta a_n a_{n-1} + \gamma a_n = \alpha a_{n-1} 1an=βan1+γαan1\frac{1}{a_n} = \frac{\beta a_{n-1} + \gamma}{\alpha a_{n-1}} 1an=βα+γαan1\frac{1}{a_n} = \frac{\beta}{\alpha} + \frac{\gamma}{\alpha a_{n-1}} 1an=bn;bn=C2+C1bn1\frac{1}{a_n} = b_n \quad ; \quad b_n = C_2 + C_1 b_{n-1}

→ So after this transformation we have got first order linear non-homogeneous constant coefficient recurrence relation which we had solved earlier 

Example 1:


an=(n2)an1(n1)an1for all n3,a1=1,a2=14a_n = \frac{(n - 2) a_{n-1}}{(n - 1) - a_{n-1}} \quad \text{for all } n \geq 3, \quad a_1 = 1, \quad a_2 = \frac{1}{4} 1an=(n1)an1(n2)an1=n1(n2)an1an1(n2)an1\frac{1}{a_n} = \frac{(n - 1) - a_{n-1}}{(n - 2) a_{n-1}} = \frac{n - 1}{(n - 2) a_{n-1}} - \frac{a_{n-1}}{(n - 2) a_{n-1}} 1an=n1(n2)an11n2\frac{1}{a_n} = \frac{n - 1}{(n - 2) a_{n-1}} - \frac{1}{n - 2} 1(n1)an=1(n2)an11(n1)(n2)\frac{1}{(n - 1) a_n} = \frac{1}{(n - 2) a_{n-1}} - \frac{1}{(n - 1)(n - 2)}


1(n1)an=bn;bn=bn11(n1)(n2)\frac{1}{(n - 1) a_n} = b_n \quad ; \quad b_n = b_{n-1} - \frac{1}{(n - 1)(n - 2)} bnbn1=1(n1)(n2)b_n - b_{n-1} = -\frac{1}{(n - 1)(n - 2)} =((n1)(n2)(n1)(n2))= - \left( \frac{(n - 1) - (n - 2)}{(n - 1)(n - 2)} \right) =(1n21n1)= - \left( \frac{1}{n - 2} - \frac{1}{n - 1} \right) bnbn1=1n11n2b_n - b_{n-1} = \frac{1}{n - 1} - \frac{1}{n - 2}


b3b2=1211b_3 - b_2 = \frac{1}{2} - \frac{1}{1} b4b3=1312b_4 - b_3 = \frac{1}{3} - \frac{1}{2} \vdots bnbn1=1n11n2b_n - b_{n-1} = \frac{1}{n - 1} - \frac{1}{n - 2}


bnb2=1n11\underline{b_n - b_2 = \frac{1}{n - 1} - 1}


1(n1)an1(21)a2=1n11\frac{1}{(n - 1) a_n} - \frac{1}{(2 - 1) a_2} = \frac{1}{n - 1} - 1 1(n1)an114=1n11\frac{1}{(n - 1) a_n} - \frac{1}{\frac{1}{4}} = \frac{1}{n - 1} - 1 1(n1)an4=1n11\frac{1}{(n - 1) a_n} - 4 = \frac{1}{n - 1} - 1


1(n1)an4=1n11\frac{1}{(n - 1)a_n} - 4 = \frac{1}{n - 1} - 1 1(n1)an=1n1+3\frac{1}{(n - 1)a_n} = \frac{1}{n - 1} + 3 1an=1+3(n1)\frac{1}{a_n} = 1 + 3(n - 1) 1an=1+3n3\frac{1}{a_n} = 1 + 3n - 3 an=13n2a_n = \frac{1}{3n - 2}

1. First-order non-linear recurrence relation - Type 2.

an=αan1+βγan1+δa_n = \frac{\alpha a_{n-1} + \beta}{\gamma a_{n-1} + \delta}


an=bn+λa_n = b_n + \lambda bn+λ=α(bn1+λ)+βγ(bn1+λ)+δb_n + \lambda = \frac{\alpha (b_{n-1} + \lambda) + \beta}{\gamma (b_{n-1} + \lambda) + \delta} bn=α(bn1+λ)+βγ(bn1+λ)+δλb_n = \frac{\alpha (b_{n-1} + \lambda) + \beta}{\gamma (b_{n-1} + \lambda) + \delta} - \lambda bn=αbn1+αλ+βλγbn1λ2γδλγ(bn1+λ)+δb_n = \frac{\alpha b_{n-1} + \alpha \lambda + \beta - \lambda \gamma b_{n-1} - \lambda^2 \gamma - \delta \lambda}{\gamma (b_{n-1} + \lambda) + \delta} =(αλγ)bn1+(αλ+βλ2γδλ)γ(bn1+λ)+δ= \frac{(\alpha - \lambda \gamma) b_{n-1} + (\alpha \lambda + \beta - \lambda^2 \gamma - \delta \lambda)}{\gamma (b_{n-1} + \lambda) + \delta}


To simplify this to a linear form, the numerator must cancel out the γ(bn1+λ)+δ\gamma (b_{n-1} + \lambda) + \delta in the denominator.

So, set:

αλ+βλ2γδλ=0\alpha \lambda + \beta - \lambda^2 \gamma - \delta \lambda = 0

Which leads to:

γλ2+δλαλβ=0\gamma \lambda^2 + \delta \lambda - \alpha \lambda - \beta = 0

Or,

γλ2+(δα)λβ=0\gamma \lambda^2 + (\delta - \alpha) \lambda - \beta = 0

Example 2:


Given:

a1=1,an+1an=4(an+11)Find ana_1 = 1, \quad a_{n+1} a_n = 4(a_{n+1} - 1) \quad \text{Find } a_n


Step-by-step:

an+1an=4an+14a_{n+1} a_n = 4 a_{n+1} - 4 an+1an4an+1=4a_{n+1} a_n - 4 a_{n+1} = -4 an+1(an4)=4a_{n+1}(a_n - 4) = -4 an+1=4an4an+1=44ana_{n+1} = \frac{-4}{a_n - 4} \quad \Rightarrow \quad a_{n+1} = \frac{4}{4 - a_n}

Compare to:

an+1=αan+βγan+δα=0, β=4, γ=1, δ=4a_{n+1} = \frac{\alpha a_n + \beta}{\gamma a_n + \delta} \quad \Rightarrow \quad \alpha = 0,\ \beta = 4,\ \gamma = -1,\ \delta = 4


Substitution:

Assume:

an=bn+λa_n = b_n + \lambda bn+1+λ=44(bn+λ)b_{n+1} + \lambda = \frac{4}{4 - (b_n + \lambda)} bn+1=44bnλλb_{n+1} = \frac{4}{4 - b_n - \lambda} - \lambda bn+1=44λ+λbn+λ24bnλb_{n+1} = \frac{4 - 4\lambda + \lambda b_n + \lambda^2}{4 - b_n - \lambda}

bn+1=λbn+λ24λ+44bnλb_{n+1} = \frac{\lambda b_n + \lambda^2 - 4\lambda + 4}{4 - b_n - \lambda} λ24λ+4=0\lambda^2 - 4\lambda + 4 = 0 (λ2)2=0λ=2(\lambda - 2)^2 = 0 \Rightarrow \lambda = 2


Substitute λ=2\lambda = 2:

bn+1=2bn4bn2=2bn2bnb_{n+1} = \frac{2 b_n}{4 - b_n - 2} = \frac{2 b_n}{2 - b_n}

Now simplify:

1bn+1=2bn2bn\frac{1}{b_{n+1}} = \frac{2 - b_n}{2 b_n} 1bn+1=1bn12\frac{1}{b_{n+1}} = \frac{1}{b_n} - \frac{1}{2}


1bn+1=Cn+1\frac{1}{b_{n+1}} = C_{n+1} Cn+1=Cn12C_{n+1} = C_n - \frac{1}{2} Cn+1Cn=12Cn is an AP of common difference 12C_{n+1} - C_n = -\frac{1}{2} \quad \Rightarrow \quad C_n \text{ is an AP of common difference } -\frac{1}{2} Cn=C1+(n1)(12)C_n = C_1 + (n-1)(-\frac{1}{2})


1bn=1b1n12\frac{1}{b_n} = \frac{1}{b_1} - \frac{n - 1}{2} 1an2=1a12n12\frac{1}{a_n - 2} = \frac{1}{a_1 - 2} - \frac{n - 1}{2}

Given:

a1=11a12=112=1a_1 = 1 \Rightarrow \frac{1}{a_1 - 2} = \frac{1}{1 - 2} = -1 1an2=1n12\frac{1}{a_n - 2} = -1 - \frac{n - 1}{2} 1an2=2(n1)2=1n2\frac{1}{a_n - 2} = \frac{-2 - (n - 1)}{2} = \frac{-1 - n}{2}


an=2nn+1



Now, let's move on to linear homogeneous equation of order 2 with constant coefficients.


an=αan1+βan2(Assume solution of the form an=xn)a_n = \alpha a_{n-1} + \beta a_{n-2} \quad \text{(Assume solution of the form } a_n = x^n\text{)}

Substituting:

an=xn,an1=xn1,an2=xn2a_n = x^n, \quad a_{n-1} = x^{n-1}, \quad a_{n-2} = x^{n-2} xn=αxn1+βxn2x^n = \alpha x^{n-1} + \beta x^{n-2}

Divide both sides by xn2x^{n-2}:

x2=αx+βx2αxβ=0x^2 = \alpha x + \beta \Rightarrow x^2 - \alpha x - \beta = 0

This is a characteristic equation, with roots k1k_1 and k2k_2.


Case 1: k1k2k_1 \ne k_2

an=λ(k1)n+μ(k2)na_n = \lambda (k_1)^n + \mu (k_2)^n


Case 2: k1=k2k_1 = k_2

an=(λ+μn)(k1)na_n = (\lambda + \mu n)(k_1)^n


Example 3:


Given:

an=an1+2an2,a1=1,a2=3a_n = a_{n-1} + 2a_{n-2}, \quad a_1 = 1, \quad a_2 = 3


Step 1: Characteristic Equation

x2=x+2x2x2=0(x+1)(x2)=0x^2 = x + 2 \Rightarrow x^2 - x - 2 = 0 \Rightarrow (x + 1)(x - 2) = 0

Roots:

x=1,x=2x = -1, \quad x = 2


Step 2: General Solution

an=λ(1)n+μ(2)na_n = \lambda(-1)^n + \mu(2)^n


Step 3: Use Initial Conditions

For n=1n = 1:

a1=λ(1)1+μ(2)1=λ+2μ=1(Equation ①)a_1 = \lambda(-1)^1 + \mu(2)^1 = -\lambda + 2\mu = 1 \quad \text{(Equation ①)}

For n=2n = 2:

a2=λ(1)2+μ(2)2=λ+4μ=3(Equation ②)a_2 = \lambda(-1)^2 + \mu(2)^2 = \lambda + 4\mu = 3 \quad \text{(Equation ②)}


Step 4: Solve the System

From Equation ①:

1=λ+2μλ=2μ11 = -\lambda + 2\mu \Rightarrow \lambda = 2\mu - 1

Substitute into Equation ②:

(2μ1)+4μ=36μ1=3μ=23(2\mu - 1) + 4\mu = 3 \Rightarrow 6\mu - 1 = 3 \Rightarrow \mu = \frac{2}{3}

Then:

λ=34μ=383=13\lambda = 3 - 4\mu = 3 - \frac{8}{3} = \frac{1}{3}


Final Answer:

an=13(1)n+23(2)n\boxed{a_n = \frac{1}{3}(-1)^n + \frac{2}{3}(2)^n}


an=22n+(1)n3a_n = \frac{2 \cdot 2^n + (-1)^n}{3}

Example 4: Fibonacci series


Given recurrence:

an+2=an+1+an,a1=1, a2=1a_{n+2} = a_{n+1} + a_n, \quad a_1 = 1,\ a_2 = 1


Step 1: Characteristic Equation

x2=x+1x2x1=0x^2 = x + 1 \Rightarrow x^2 - x - 1 = 0 x=1±1+42=1±52x = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}


Step 2: General Solution

an=λ(1+52)n+μ(152)na_n = \lambda \left(\frac{1 + \sqrt{5}}{2}\right)^n + \mu \left(\frac{1 - \sqrt{5}}{2}\right)^n


Step 3: Apply Initial Conditions

For n=1n = 1:

1=λ(1+52)+μ(152)(Equation ①)1 = \lambda \left(\frac{1 + \sqrt{5}}{2}\right) + \mu \left(\frac{1 - \sqrt{5}}{2}\right) \quad \text{(Equation ①)}

For n=2n = 2:

1=λ(1+52)2+μ(152)21 = \lambda \left(\frac{1 + \sqrt{5}}{2}\right)^2 + \mu \left(\frac{1 - \sqrt{5}}{2}\right)^2 1=λ(3+52)+μ(352)(Equation ②)1 = \lambda \left(\frac{3 + \sqrt{5}}{2}\right) + \mu \left(\frac{3 - \sqrt{5}}{2}\right) \quad \text{(Equation ②)}


Step 4: Solve the System

Subtracting (①) from (②):

0=λ(3+521+52)+μ(352152)0 = \lambda \left( \frac{3 + \sqrt{5}}{2} - \frac{1 + \sqrt{5}}{2} \right) + \mu \left( \frac{3 - \sqrt{5}}{2} - \frac{1 - \sqrt{5}}{2} \right) 0=λ(1)+μ(1)λ+μ=00 = \lambda(1) + \mu(1) \Rightarrow \boxed{\lambda + \mu = 0}


Example 5:


an=4an17an2,a0=1,a1=4a_n = -4a_{n-1} - 7a_{n-2}, \quad a_0 = 1, \quad a_1 = -4

Find no. of positive integral divisors of (a50)2a49a51

Solution:
Let:

bn=(an)2an1an+1b_n = (a_n)^2 - a_{n-1} a_{n+1}

Given:

an+1=4an7an1a_{n+1} = -4a_n - 7a_{n-1}

Substitute:

bn=an2an1(4an7an1)b_n = a_n^2 - a_{n-1}(-4a_n - 7a_{n-1}) =an2+4anan1+7an12= a_n^2 + 4a_n a_{n-1} + 7a_{n-1}^2 =an(an+4an1)+7an12= a_n(a_n + 4a_{n-1}) + 7a_{n-1}^2

Now use:

an=4an17an2an+4an1=7an2a_n = -4a_{n-1} - 7a_{n-2} \Rightarrow a_n + 4a_{n-1} = -7a_{n-2}

So:

bn=an(7an2)+7an12=7anan2+7an12b_n = a_n(-7a_{n-2}) + 7a_{n-1}^2 = -7a_n a_{n-2} + 7a_{n-1}^2 bn=7(an12anan2)b_n = 7(a_{n-1}^2 - a_n a_{n-2})


Thus, we have the recurrence:

bn=7bn1\boxed{b_n = 7b_{n-1}}

We have the recurrence:

bn=7bn1Geometric progressionb_n = 7b_{n-1} \Rightarrow \text{Geometric progression}

So:

bn=b17n1b_n = b_1 \cdot 7^{n-1}


Step: Compute b1b_1

Given:

a0=1,a1=4a_0 = 1, \quad a_1 = -4

Use recurrence to compute:

a2=4a17a0=4(4)7(1)=167=9a_2 = -4a_1 - 7a_0 = -4(-4) - 7(1) = 16 - 7 = 9

Then:

b1=a12a0a2=(4)219=169=7b_1 = a_1^2 - a_0 a_2 = (-4)^2 - 1 \cdot 9 = 16 - 9 = 7


Therefore:

bn=7nb50=750b_n = 7^n \quad \Rightarrow \quad b_{50} = 7^{50}


Final Step: Number of positive integral divisors of b50=750b_{50} = 7^{50}

Since 7507^{50} is a power of a prime:

Number of positive divisors=50+1=51\text{Number of positive divisors} = 50 + 1 = \boxed{51}


Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics