Algebra theory - sequences

Sum of Arithmetic progression:

Classic “reverse-and-add” proof for the sum of an arithmetic progression

Let

Sn  =  a+(a+d)+(a+2d)++[a+(n1)d],S_n \;=\; a + \bigl(a+d\bigr) + \bigl(a+2d\bigr) + \dots + \bigl[a+(n-1)d\bigr],

where

  • aa is the first term,

  • dd is the common difference,

  • nn is the number of terms.


1. Write the same sum in reverse order

Sn  =  [a+(n1)d]+[a+(n2)d]++a.S_n \;=\; \bigl[a+(n-1)d\bigr] + \bigl[a+(n-2)d\bigr] + \dots + a.


2. Add the two expressions term-by-term

Sn=a+(a+d)+(a+2d)++[a+(n1)d]Sn=[a+(n1)d]+[a+(n2)d]++a2Sn=[a+a+(n1)d]  +  [a+a+(n2)d]  +    +  [a+a+0d].\begin{aligned} S_n &{}= a + (a+d) + (a+2d) + \dots + \bigl[a+(n-1)d\bigr] \\ S_n &{}= \bigl[a+(n-1)d\bigr] + \bigl[a+(n-2)d\bigr] + \dots + a \\ \hline 2S_n &{}= \bigl[\,a + a + (n-1)d\,\bigr] \;+\; \bigl[\,a + a + (n-2)d\,\bigr] \;+\; \dots \;+\; \bigl[\,a + a + 0\cdot d\,\bigr]. \end{aligned}

Notice every bracket on the right is the same:

a+a+(n1)d  =  2a+(n1)d.a + a + (n-1)d \;=\; 2a + (n-1)d.

Because there are nn brackets, we have

2Sn  =  n[2a+(n1)d].2S_n \;=\; n\bigl[\,2a + (n-1)d\,\bigr].


3. Solve for SnS_n

Sn  =  n2[2a+(n1)d].\boxed{\,S_n \;=\; \dfrac{n}{2}\,\bigl[\,2a + (n-1)d\,\bigr]\,}.


4. Alternate form using the last term

Let the last term be l=a+(n1)dl = a + (n-1)d.
Then

Sn  =  n2(a+l),S_n \;=\; \frac{n}{2}\,(a + l),

the well-known “average of first and last, times number of terms.”


Why it works

Reversing the list pairs each smallest term with the matching largest term, the next-smallest with the next-largest, and so on. Every pair sums to the same constant a+la + l; there are nn such pairs, so the double-sum 2Sn2S_n is n(a+l)n(a+l). Dividing by 2 gives the desired formula.

This elegant trick—often credited to a young Gauss—works for any arithmetic progression, no matter the starting value aa, common difference dd, or length nn.

Sum of Geometric progression:

“Multiply-and-subtract” proof for the finite geometric series

Let

Sn  =  a+ar+ar2++arn1,S_n \;=\; a + ar + ar^{2} + \dots + ar^{\,n-1},

where

  • aa is the first term,

  • rr is the common ratio,

  • nn is the number of terms.


1. Multiply the entire sum by the common ratio rr

rSn  =  ar+ar2+ar3++arn.rS_n \;=\; ar + ar^{2} + ar^{3} + \dots + ar^{\,n}.


2. Subtract the second equation from the first

SnrSn=(a+ar+ar2++arn1)    (ar+ar2++arn)=aarn.\begin{aligned} S_n - rS_n &= \bigl(a + ar + ar^{2} + \dots + ar^{\,n-1}\bigr) \;-\; \bigl(ar + ar^{2} + \dots + ar^{\,n}\bigr) \\ &= a - ar^{\,n}. \end{aligned}

Every intermediate term cancels: arar cancels, ar2ar^{2} cancels, and so on, leaving only the first term aa and the “extra” term arnar^{\,n} from the shifted series.


3. Solve for SnS_n

(1r)Sn  =  a(1rn)Sn  =  a(1rn)1r(r1).(1 - r)S_n \;=\; a\bigl(1 - r^{\,n}\bigr) \quad\Longrightarrow\quad \boxed{\,S_n \;=\; \dfrac{a\bigl(1 - r^{\,n}\bigr)}{1 - r}\,}\quad(r \neq 1).


4. Special case r=1r = 1

If r=1r = 1, every term is aa, so

Sn  =  a+a++a  =  na.S_n \;=\; a + a + \dots + a \;=\; na.


5. Infinite-series extension ( r<1|r| < 1 )

Taking the limit as nn \to \infty with r<1|r| < 1:

S  =  limnSn  =  a1r,S_\infty \;=\; \lim_{n\to\infty} S_n \;=\; \frac{a}{1 - r},

because rn0r^{\,n} \to 0.


Why it works

Multiplying by rr shifts every term one place to the right. Subtracting aligns the two sums so that all interior terms cancel pairwise, isolating just the first term of the original series and the “overflow” term at the end. The resulting simple linear equation in SnS_n yields the closed-form formula.

Example 1:


1) Find sum of x=1nx22x\sum_{x=1}^{n} x^2 \cdot 2^x

Solution:
Whenever you see a series which is "partially" G.P., you can use the same trick we used to prove G.P. sum formula, i.e. multiply by common ratio and subtract.
Here we will have to do it twice.

Sn=122+2222+3223++n22nS_n = 1^2 \cdot 2 + 2^2 \cdot 2^2 + 3^2 \cdot 2^3 + \cdots + n^2 \cdot 2^n 2Sn=1222+2223++(n1)22n+n22n+1


Sn=12+322+523++(2n1)2nn22n+1- S_n = 1 \cdot 2 + 3 \cdot 2^2 + 5 \cdot 2^3 + \cdots + (2n - 1) \cdot 2^n - n^2 \cdot 2^{n+1} 2Sn=122+323++(2n3)2n+(2n1)2n+1n22n+2- 2S_n = 1 \cdot 2^2 + 3 \cdot 2^3 + \cdots + (2n - 3) \cdot 2^n + (2n - 1) \cdot 2^{n+1} - n^2 \cdot 2^{n+2}


Sn=12+222+223++22nS_n = 1 \cdot 2 + 2 \cdot 2^2 + 2 \cdot 2^3 + \cdots + 2 \cdot 2^n Sn=2+8(12n112)n22n+1(2n1)2n+1+n22n+2S_n = 2 + 8 \left( \frac{1 - 2^{n-1}}{1 - 2} \right) - n^2 \cdot 2^{n+1} - (2n - 1) \cdot 2^{n+1} + n^2 \cdot 2^{n+2}


Sn=2+8(2n11)2n+1(n22n+1)+n22n+2S_n = 2 + 8 \left(2^{n-1} - 1\right) - 2^{n+1} \left(n^2 - 2n + 1\right) + n^2 \cdot 2^{n+2} Sn=2n+26(n1)22n+1+n22n+2S_n = 2^{n+2} - 6 - (n-1)^2 \cdot 2^{n+1} + n^2 \cdot 2^{n+2}



Example 2:


r=1n(r+1)3r\sum_{r=1}^{n} (r+1) \cdot 3^r

Solution:
It's quite simple.
Split it into 2 sums.
One of them is a simple G.P.
For the other we will multiply by common ratio and subtract once.

For

Sn  =  r=1n(r+1)3r,S_n \;=\;\sum_{r=1}^{n}(r+1)\,3^{\,r},

split the summand into two simpler series:

Sn=r=1nr3r  +  r=1n3r.S_n=\sum_{r=1}^{n}r\,3^{\,r}\;+\;\sum_{r=1}^{n}3^{\,r}.


1. The geometric part

r=1n3r=3  3n131=32(3n1).\sum_{r=1}^{n}3^{\,r}=3\;\frac{3^{\,n}-1}{3-1}= \frac{3}{2}\bigl(3^{\,n}-1\bigr).


2. The “r3rr\,3^{r}” part

A standard closed form is

r=1nrar=a[1(n+1)an+nan+1](1a)2(a1).\sum_{r=1}^{n} r\,a^{r}= \frac{a\bigl[1-(n+1)a^{n}+n\,a^{n+1}\bigr]}{(1-a)^{2}} \qquad(a\neq1).

With a=3a=3:

r=1nr3r=3[1(n+1)3n+n3n+1](13)2=34[1+(2n1)3n].\sum_{r=1}^{n} r\,3^{\,r}= \frac{3\bigl[1-(n+1)3^{\,n}+n\,3^{\,n+1}\bigr]}{(1-3)^{2}} =\frac{3}{4}\Bigl[1+(2n-1)3^{\,n}\Bigr].


3. Combine

Sn=34[1+(2n1)3n]+32(3n1)=34[(2n+1)3n1].\begin{aligned} S_n &=\frac{3}{4}\Bigl[1+(2n-1)3^{\,n}\Bigr] +\frac{3}{2}\bigl(3^{\,n}-1\bigr) \\ &= \frac{3}{4}\Bigl[(2n+1)3^{\,n}-1\Bigr]. \end{aligned}


Final closed form

Sn=34[(2n+1)3n1]\boxed{\displaystyle S_n=\frac{3}{4}\Bigl[(2n+1)3^{\,n}-1\Bigr]}


Quick verification

nn Direct sum r=1n(r+1)3r\sum_{r=1}^{n}(r+1)3^{r} Formula 34[(2n+1)3n1]\dfrac{3}{4}\bigl[(2n+1)3^{n}-1\bigr] Match?
1 (1+1)31=23=6(1+1)3^{1}=2\cdot3=6 34[(3)31]=34(91)=6\dfrac{3}{4}\bigl[(3)3-1\bigr]=\dfrac{3}{4}(9-1)=6
2 (1+1)31+(2+1)32=6+27=33(1+1)3^{1}+(2+1)3^{2}=6+27=33 34[(5)91]=34(451)=33\dfrac{3}{4}\bigl[(5)9-1\bigr]=\dfrac{3}{4}(45-1)=33

Both checks confirm the closed-form formula is correct.

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics