Algebra theory - symmetric expressions example questions



Example 1:

x3+ρx+q=0x^3 + \rho x + q = 0
α,β,γ\alpha, \beta, \gamma are roots of the cubic.

Prove that

α5+β5+γ55=α3+β3+γ33α2+β2+γ22\frac{\alpha^5 + \beta^5 + \gamma^5}{5} = \frac{\alpha^3 + \beta^3 + \gamma^3}{3} \cdot \frac{\alpha^2 + \beta^2 + \gamma^2}{2}
x3+0x2+ρx+q=0x^3 + 0x^2 + \rho x + q = 0 α+β+γ=0(α+β+γ)2=0α2+β2+γ2+2(αβ+βγ+γα)=0α2+β2+γ2=2(αβ+βγ+γα)\alpha + \beta + \gamma = 0 \Rightarrow (\alpha + \beta + \gamma)^2 = 0 \Rightarrow \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \beta\gamma + \gamma\alpha) = 0 \Rightarrow \alpha^2 + \beta^2 + \gamma^2 = -2(\alpha\beta + \beta\gamma + \gamma\alpha) αβ+βγ+γα=ρα2+β2+γ2=2ρ\alpha\beta + \beta\gamma + \gamma\alpha = \rho \Rightarrow \alpha^2 + \beta^2 + \gamma^2 = -2\rho
α3+ρα+q=0α3=ραq,β3=ρβq,γ3=ργq\alpha^3 + \rho \alpha + q = 0 \Rightarrow \alpha^3 = -\rho\alpha - q,\quad \beta^3 = -\rho\beta - q,\quad \gamma^3 = -\rho\gamma - q α3+β3+γ3=ρ(α+β+γ)3qα3+β3+γ3=3q\alpha^3 + \beta^3 + \gamma^3 = -\rho(\alpha + \beta + \gamma) - 3q \Rightarrow \alpha^3 + \beta^3 + \gamma^3 = -3q α2+β2+γ2=(α+β+γ)22(αβ+βγ+γα)=02ρα2+β2+γ2=2ρ\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) = 0 - 2\rho \Rightarrow \alpha^2 + \beta^2 + \gamma^2 = -2\rho
α3+ρα+q=0α2(α3+ρα+q)=0α2α5+ρα3+qα2=0α5=ρα3qα2\alpha^3 + \rho \alpha + q = 0 \Rightarrow \alpha^2(\alpha^3 + \rho \alpha + q) = 0 \cdot \alpha^2 \Rightarrow \alpha^5 + \rho \alpha^3 + q\alpha^2 = 0 \Rightarrow \alpha^5 = -\rho \alpha^3 - q\alpha^2


Here is the handwritten content from the second image converted to text:


α5=ρα3qα2\alpha^5 = -\rho \alpha^3 - q\alpha^2 =ρ(ραq)qα2=ρ2α+ρqqα2ρ2α+ρqqα2= -\rho(-\rho \alpha - q) - q \alpha^2 = \rho^2 \alpha + \rho q - q \alpha^2 \Rightarrow \rho^2 \alpha + \rho q - q \alpha^2 α5=qα2+ρ2α+ρq\alpha^5 = -q \alpha^2 + \rho^2 \alpha + \rho q β5=qβ2+ρ2β+ρq\beta^5 = -q \beta^2 + \rho^2 \beta + \rho q γ5=qγ2+ρ2γ+ρq\gamma^5 = -q \gamma^2 + \rho^2 \gamma + \rho q


α5+β5+γ5=q(α2+β2+γ2)+ρ2(α+β+γ)+3ρq\alpha^5 + \beta^5 + \gamma^5 = -q(\alpha^2 + \beta^2 + \gamma^2) + \rho^2(\alpha + \beta + \gamma) + 3\rho q =q(2ρ)+0+3ρq= -q(-2\rho) + 0 + 3\rho q α5+β5+γ5=5ρq\alpha^5 + \beta^5 + \gamma^5 = 5\rho q


α5+β5+γ55=(ρ)(q)=α3+β3+γ33α2+β2+γ22\frac{\alpha^5 + \beta^5 + \gamma^5}{5} = (-\rho)(-q) = \frac{\alpha^3 + \beta^3 + \gamma^3}{3} \cdot \frac{\alpha^2 + \beta^2 + \gamma^2}{2}


Example 2:


α+β+γ=0then\alpha + \beta + \gamma = 0 \quad \text{then} Find value of 3(α2+β2+γ2)(α5+β5+γ5)(α3+β3+γ3)(α4+β4+γ4)\text{Find value of } \frac{3(\alpha^2 + \beta^2 + \gamma^2)(\alpha^5 + \beta^5 + \gamma^5)}{(\alpha^3 + \beta^3 + \gamma^3)(\alpha^4 + \beta^4 + \gamma^4)}


Solution:
Assume a cubic polynomial whose roots are 

α,β,γ\alpha, \beta, \gamma:

ax3+bx2+cx+d=0a x^3 + b x^2 + c x + d = 0

Given α+β+γ=0ba=0b=0\alpha + \beta + \gamma = 0 \Rightarrow \frac{b}{a} = 0 \Rightarrow b = 0

ax3+cx+d=0x3+cax+da=0x3+ρx+q=0a x^3 + c x + d = 0 \Rightarrow x^3 + \frac{c}{a} x + \frac{d}{a} = 0 \Rightarrow x^3 + \rho x + q = 0 α+β+γ=0αβ+βγ+γα=ραβγ=q\alpha + \beta + \gamma = 0 \quad \alpha\beta + \beta\gamma + \gamma\alpha = \rho \quad \alpha\beta\gamma = -q α2+β2+γ2=(α+β+γ)22(αβ+βγ+γα)=02(ρ)\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) = 0 - 2(\rho) α2+β2+γ2=2ρ\Rightarrow \alpha^2 + \beta^2 + \gamma^2 = -2\rho α3+β3+γ3=3q\alpha^3 + \beta^3 + \gamma^3 = -3q α5+β5+γ5=5ρq\alpha^5 + \beta^5 + \gamma^5 = 5\rho q


α3+ρα+q=0\alpha^3 + \rho \alpha + q = 0 α4+ρα2+qα=0α4=ρα2qα\alpha^4 + \rho \alpha^2 + q \alpha = 0 \Rightarrow \alpha^4 = -\rho \alpha^2 - q \alpha β4=ρβ2qβγ4=ργ2qγ\beta^4 = -\rho \beta^2 - q \beta \quad \gamma^4 = -\rho \gamma^2 - q \gamma


α4+β4+γ4=ρ(α2+β2+γ2)q(α+β+γ)=ρ(2ρ)q(0)\alpha^4 + \beta^4 + \gamma^4 = -\rho(\alpha^2 + \beta^2 + \gamma^2) - q(\alpha + \beta + \gamma) = \rho(-2\rho) - q(0) α4+β4+γ4=2ρ2\Rightarrow \alpha^4 + \beta^4 + \gamma^4 = 2\rho^2


3(2ρ)(5ρq)(3q)(2ρ2)=5\frac{3(-2\rho)(5\rho q)}{(-3q)(2\rho^2)} = 5



Example 3:

Problem Statement:

Given x,y,zx, y, z are real and:

x+y+z=3x + y + z = 3 x2+y2+z2=5x^2 + y^2 + z^2 = 5 x3+y3+z3=7x^3 + y^3 + z^3 = 7

Find the value of x4+y4+z4x^4 + y^4 + z^4


Solution:

Given:

x+y+z=3x + y + z = 3 xy+yz+zx=2(Derived)xy + yz + zx = 2 \quad \text{(Derived)} xyz=23xyz = -\frac{2}{3}


From the identity:

(x+y+z)2=x2+y2+z2+2(xy+yz+zx)(x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx) 9=5+2(xy+yz+zx)xy+yz+zx=29 = 5 + 2(xy + yz + zx) \Rightarrow xy + yz + zx = 2


Using identity:

x3+y3+z33xyz=(x+y+z)[x2+y2+z2(xy+yz+zx)]x^3 + y^3 + z^3 - 3xyz = (x + y + z)[x^2 + y^2 + z^2 - (xy + yz + zx)] 73xyz=3[52]73xyz=9xyz=237 - 3xyz = 3[5 - 2] \Rightarrow 7 - 3xyz = 9 \Rightarrow xyz = -\frac{2}{3}


Starting from the cubic:

x33x2+2x+23=0x^3 - 3x^2 + 2x + \frac{2}{3} = 0

This polynomial holds for x,y,zx, y, z, so:

x33x2+2x+23=0x4=3x32x223xx^3 - 3x^2 + 2x + \frac{2}{3} = 0 \Rightarrow x^4 = 3x^3 - 2x^2 - \frac{2}{3}x

Similarly:

y4=3y32y223yy^4 = 3y^3 - 2y^2 - \frac{2}{3}y

z4z^4 follows same form.


Now compute:

x4+y4+z4=3(x3+y3+z3)2(x2+y2+z2)23(x+y+z)x^4 + y^4 + z^4 = 3(x^3 + y^3 + z^3) - 2(x^2 + y^2 + z^2) - \frac{2}{3}(x + y + z)

Substituting known values:

=3(7)2(5)23(3)=21102=9= 3(7) - 2(5) - \frac{2}{3}(3) = 21 - 10 - 2 = 9



Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics