Algebra theory weighted means examples

Ex1: Prove that

(a+b2)a+babba\left( \frac{a + b}{2} \right)^{a + b} \geq a^b \cdot b^a


a+b2>(abba)1a+b\frac{a + b}{2} > (a^b b^a)^{\frac{1}{a + b}}


WAM ≥ WGM

WAMWGM{ab,ba}\text{WAM} \geq \text{WGM} \quad \left\{ \text{a}^b, \text{b}^a \right\}

a,a,a,a, a, a, \ldotsbb times
b,b,b,b, b, b, \ldotsaa times


WAM=a1w1+a2w2++anwnw1+w2++wn=ab+baa+b\text{WAM} = \frac{a_1 w_1 + a_2 w_2 + \ldots + a_n w_n}{w_1 + w_2 + \ldots + w_n} = \frac{a b + b a}{a + b}


WGM=(a1w1a2w2anwn)1w1+w2++wn=(abba)1a+b\text{WGM} = (a_1^{w_1} a_2^{w_2} \ldots a_n^{w_n})^{\frac{1}{w_1 + w_2 + \ldots + w_n}} = (a^b b^a)^{\frac{1}{a + b}}


WAMWGM\text{WAM} \geq \text{WGM} ab+baa+b(abba)1a+b\frac{a b + b a}{a + b} \geq (a^b b^a)^{\frac{1}{a + b}} 2aba+b(abba)1a+b(1)\frac{2 a b}{a + b} \geq (a^b b^a)^{\frac{1}{a + b}} \tag{1}


AM ≥ HM { a, b }

a+b221a+1b\frac{a + b}{2} \geq \frac{2}{\frac{1}{a} + \frac{1}{b}} a+b22aba+b(2)\frac{a + b}{2} \geq \frac{2 a b}{a + b} \tag{2}


a+b22aba+b(abba)1a+b\frac{a + b}{2} \geq \frac{2 a b}{a + b} \Rightarrow \left( a^b b^a \right)^{\frac{1}{a + b}}


a+b2(abba)1a+b\frac{a + b}{2} \geq (a^b b^a)^{\frac{1}{a + b}} (a+b2)a+babba\left( \frac{a + b}{2} \right)^{a + b} \geq a^b b^a


Ex2: Prove that

(1+na1+n)n+1>an\left( \frac{1 + n a}{1 + n} \right)^{n + 1} > a^n


WAM ≥ WGM

{a1=1, ω1=1a2=a, ω2=n\begin{cases} a_1 = 1,\ \omega_1 = 1 \\ a_2 = a,\ \omega_2 = n \end{cases} a1ω1+a2ω2ω1+ω2(a1ω1a2ω2)1ω1+ω2\frac{a_1 \omega_1 + a_2 \omega_2}{\omega_1 + \omega_2} \geq \left( a_1^{\omega_1} a_2^{\omega_2} \right)^{\frac{1}{\omega_1 + \omega_2}} 1(1)+an1+n(11an)1n+1\frac{1(1) + a n}{1 + n} \geq \left( 1^1 \cdot a^n \right)^{\frac{1}{n + 1}} 1+an1+nann+1\frac{1 + a n}{1 + n} \geq a^{\frac{n}{n + 1}} (1+an1+n)n+1an\left( \frac{1 + a n}{1 + n} \right)^{n + 1} \geq a^n


Ex3:

 Prove that

a3b(a+b)427256\frac{a^3 b}{(a + b)^4} \leq \frac{27}{256}



a3b(a+b)427256\frac{a^3 b}{(a + b)^4} \leq \frac{27}{256} (a+b)4256a3b27\frac{(a + b)^4}{256} \geq \frac{a^3 b}{27} (a+b)428(a3)3b\frac{(a + b)^4}{2^8} \geq \left( \frac{a}{3} \right)^3 b (a+b4)4(a3)3b\left( \frac{a + b}{4} \right)^4 \geq \left( \frac{a}{3} \right)^3 b a+b4((a3)3b)14\frac{a + b}{4} \geq \left( \left( \frac{a}{3} \right)^3 b \right)^{\frac{1}{4}} 3(a3)+b4((a3)3b)14\frac{3 \left( \frac{a}{3} \right) + b}{4} \geq \left( \left( \frac{a}{3} \right)^3 b \right)^{\frac{1}{4}} \quad \checkmark


WAM ≥ WGM on

{a1=a3, ω1=3a2=b, ω2=1\begin{cases} a_1 = \frac{a}{3},\ \omega_1 = 3 \\ a_2 = b,\ \omega_2 = 1 \end{cases} a1ω1+a2ω2ω1+ω2(a1ω1a2ω2)1ω1+ω2\frac{a_1 \omega_1 + a_2 \omega_2}{\omega_1 + \omega_2} \geq \left( a_1^{\omega_1} \cdot a_2^{\omega_2} \right)^{\frac{1}{\omega_1 + \omega_2}} (a3)(3)+b(1)3+1((a3)3b)13+1\frac{\left( \frac{a}{3} \right)(3) + b(1)}{3 + 1} \geq \left( \left( \frac{a}{3} \right)^3 \cdot b \right)^{\frac{1}{3 + 1}} a+b4(a3b27)14\frac{a + b}{4} \geq \left( \frac{a^3 b}{27} \right)^{\frac{1}{4}}


Ex4:

Find min of

9p+16qifp+q=7\frac{9}{p} + \frac{16}{q} \quad \text{if} \quad p + q = 7


p3+p3+p3+q4+q4+q4+q4=7\frac{p}{3} + \frac{p}{3} + \frac{p}{3} + \frac{q}{4} + \frac{q}{4} + \frac{q}{4} + \frac{q}{4} = 7 (p3)3+(q4)4=7\left( \frac{p}{3} \right)3 + \left( \frac{q}{4} \right)4 = 7 {a1=p3,ω1=3a2=q4,ω2=4\begin{cases} a_1 = \frac{p}{3}, \quad \omega_1 = 3 \\ a_2 = \frac{q}{4}, \quad \omega_2 = 4 \end{cases}


WAM ≥ WHM

a1ω1+a2ω2ω1+ω2ω1+ω2ω1a1+ω2a2\frac{a_1 \omega_1 + a_2 \omega_2}{\omega_1 + \omega_2} \geq \frac{\omega_1 + \omega_2}{\frac{\omega_1}{a_1} + \frac{\omega_2}{a_2}}


(p3)3+(q4)43+43+43p/3+4q/4\frac{\left( \frac{p}{3} \right)3 + \left( \frac{q}{4} \right)4}{3 + 4} \geq \frac{3 + 4}{\frac{3}{p/3} + \frac{4}{q/4}} p+q779p+16q\frac{p + q}{7} \geq \frac{7}{\frac{9}{p} + \frac{16}{q}} 179p+16q1 \geq \frac{7}{\frac{9}{p} + \frac{16}{q}} 9p+16q7\frac{9}{p} + \frac{16}{q} \geq 7

Answer = 7

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics