Algebra theory weighted means examples Get link Facebook X Pinterest Email Other Apps July 29, 2025 Ex1: Prove that (a+b2)a+b≥ab⋅ba\left( \frac{a + b}{2} \right)^{a + b} \geq a^b \cdot b^a a+b2>(abba)1a+b\frac{a + b}{2} > (a^b b^a)^{\frac{1}{a + b}} WAM ≥ WGM WAM≥WGM{ab,ba}\text{WAM} \geq \text{WGM} \quad \left\{ \text{a}^b, \text{b}^a \right\} a,a,a,…a, a, a, \ldots — bb times b,b,b,…b, b, b, \ldots — aa times WAM=a1w1+a2w2+…+anwnw1+w2+…+wn=ab+baa+b\text{WAM} = \frac{a_1 w_1 + a_2 w_2 + \ldots + a_n w_n}{w_1 + w_2 + \ldots + w_n} = \frac{a b + b a}{a + b} WGM=(a1w1a2w2…anwn)1w1+w2+…+wn=(abba)1a+b\text{WGM} = (a_1^{w_1} a_2^{w_2} \ldots a_n^{w_n})^{\frac{1}{w_1 + w_2 + \ldots + w_n}} = (a^b b^a)^{\frac{1}{a + b}} WAM≥WGM\text{WAM} \geq \text{WGM} ab+baa+b≥(abba)1a+b\frac{a b + b a}{a + b} \geq (a^b b^a)^{\frac{1}{a + b}} 2aba+b≥(abba)1a+b(1)\frac{2 a b}{a + b} \geq (a^b b^a)^{\frac{1}{a + b}} \tag{1} AM ≥ HM { a, b } a+b2≥21a+1b\frac{a + b}{2} \geq \frac{2}{\frac{1}{a} + \frac{1}{b}} a+b2≥2aba+b(2)\frac{a + b}{2} \geq \frac{2 a b}{a + b} \tag{2} a+b2≥2aba+b⇒(abba)1a+b\frac{a + b}{2} \geq \frac{2 a b}{a + b} \Rightarrow \left( a^b b^a \right)^{\frac{1}{a + b}} a+b2≥(abba)1a+b\frac{a + b}{2} \geq (a^b b^a)^{\frac{1}{a + b}} (a+b2)a+b≥abba\left( \frac{a + b}{2} \right)^{a + b} \geq a^b b^a Ex2: Prove that (1+na1+n)n+1>an\left( \frac{1 + n a}{1 + n} \right)^{n + 1} > a^n WAM ≥ WGM {a1=1, ω1=1a2=a, ω2=n\begin{cases} a_1 = 1,\ \omega_1 = 1 \\ a_2 = a,\ \omega_2 = n \end{cases} a1ω1+a2ω2ω1+ω2≥(a1ω1a2ω2)1ω1+ω2\frac{a_1 \omega_1 + a_2 \omega_2}{\omega_1 + \omega_2} \geq \left( a_1^{\omega_1} a_2^{\omega_2} \right)^{\frac{1}{\omega_1 + \omega_2}} 1(1)+an1+n≥(11⋅an)1n+1\frac{1(1) + a n}{1 + n} \geq \left( 1^1 \cdot a^n \right)^{\frac{1}{n + 1}} 1+an1+n≥ann+1\frac{1 + a n}{1 + n} \geq a^{\frac{n}{n + 1}} (1+an1+n)n+1≥an\left( \frac{1 + a n}{1 + n} \right)^{n + 1} \geq a^n Ex3: Prove that a3b(a+b)4≤27256\frac{a^3 b}{(a + b)^4} \leq \frac{27}{256} a3b(a+b)4≤27256\frac{a^3 b}{(a + b)^4} \leq \frac{27}{256} (a+b)4256≥a3b27\frac{(a + b)^4}{256} \geq \frac{a^3 b}{27} (a+b)428≥(a3)3b\frac{(a + b)^4}{2^8} \geq \left( \frac{a}{3} \right)^3 b (a+b4)4≥(a3)3b\left( \frac{a + b}{4} \right)^4 \geq \left( \frac{a}{3} \right)^3 b a+b4≥((a3)3b)14\frac{a + b}{4} \geq \left( \left( \frac{a}{3} \right)^3 b \right)^{\frac{1}{4}} 3(a3)+b4≥((a3)3b)14✓\frac{3 \left( \frac{a}{3} \right) + b}{4} \geq \left( \left( \frac{a}{3} \right)^3 b \right)^{\frac{1}{4}} \quad \checkmark WAM ≥ WGM on {a1=a3, ω1=3a2=b, ω2=1\begin{cases} a_1 = \frac{a}{3},\ \omega_1 = 3 \\ a_2 = b,\ \omega_2 = 1 \end{cases} a1ω1+a2ω2ω1+ω2≥(a1ω1⋅a2ω2)1ω1+ω2\frac{a_1 \omega_1 + a_2 \omega_2}{\omega_1 + \omega_2} \geq \left( a_1^{\omega_1} \cdot a_2^{\omega_2} \right)^{\frac{1}{\omega_1 + \omega_2}} (a3)(3)+b(1)3+1≥((a3)3⋅b)13+1\frac{\left( \frac{a}{3} \right)(3) + b(1)}{3 + 1} \geq \left( \left( \frac{a}{3} \right)^3 \cdot b \right)^{\frac{1}{3 + 1}} a+b4≥(a3b27)14\frac{a + b}{4} \geq \left( \frac{a^3 b}{27} \right)^{\frac{1}{4}} Ex4: Find min of 9p+16qifp+q=7\frac{9}{p} + \frac{16}{q} \quad \text{if} \quad p + q = 7 p3+p3+p3+q4+q4+q4+q4=7\frac{p}{3} + \frac{p}{3} + \frac{p}{3} + \frac{q}{4} + \frac{q}{4} + \frac{q}{4} + \frac{q}{4} = 7 (p3)3+(q4)4=7\left( \frac{p}{3} \right)3 + \left( \frac{q}{4} \right)4 = 7 {a1=p3,ω1=3a2=q4,ω2=4\begin{cases} a_1 = \frac{p}{3}, \quad \omega_1 = 3 \\ a_2 = \frac{q}{4}, \quad \omega_2 = 4 \end{cases} WAM ≥ WHM a1ω1+a2ω2ω1+ω2≥ω1+ω2ω1a1+ω2a2\frac{a_1 \omega_1 + a_2 \omega_2}{\omega_1 + \omega_2} \geq \frac{\omega_1 + \omega_2}{\frac{\omega_1}{a_1} + \frac{\omega_2}{a_2}} (p3)3+(q4)43+4≥3+43p/3+4q/4\frac{\left( \frac{p}{3} \right)3 + \left( \frac{q}{4} \right)4}{3 + 4} \geq \frac{3 + 4}{\frac{3}{p/3} + \frac{4}{q/4}} p+q7≥79p+16q\frac{p + q}{7} \geq \frac{7}{\frac{9}{p} + \frac{16}{q}} 1≥79p+16q1 \geq \frac{7}{\frac{9}{p} + \frac{16}{q}} 9p+16q≥7\frac{9}{p} + \frac{16}{q} \geq 7Answer = 7 Get link Facebook X Pinterest Email Other Apps Comments
IOQM 2024 Paper solutions (Done 1-21, 29) July 14, 2025 Q1 (number-theory). The smallest positive integer that does not divide 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 is: Solution : This product has all the integers from 1 to 9. So smallest integer not dividing it would be the next prime after 9. Which is 11. Answer: 11 Q2 (combinatorics): The number of four-digit odd numbers having digits 1, 2, 3, 4, each occurring exactly once, is: Solution: Last digit has to be 1 or 3: 2C1 Choosing remaining 3 digits: 3C3 Arranging those 3 digits: 3! Answer: 2C1*3C3*3! = 12 Q3 (number-theory): The number obtained by taking the last two digits of \(5^{2024}\) in the same order is: Solution: To get last 2 digits from number, divide by 100 and take the remainder. So we have to compute mod 100. 25 mod 100 = 25 25.5 mod 100 = 125 mod 100 = 25 5^3.5 mod 100 = 25.5 mod 100 = 25 5^4.5 mod 100 = 25.5 mod 100 = 25 ..... So: 5^2024 mod 100 = 25. Q4 (geometry): Let ABCD be a quadrilateral with \(\angle ADC = 70^\circ\), \(\angle ACD = 70^\circ\), \(\angle ACB = 10^\circ\... Read more
Combinatorics DPP - RACE 6 - Q16 pending discussion June 26, 2025 Q1 . A question paper consists of two sections. Section A has 7 questions and section B has 8 questions. A student has to answer 10 questions out of these 15 questions. The number of ways in which he can answer if he must answer at least 3 of section A and at least 4 of the section B is: Solution: One wrong way to solve this: For the mandatory questions: 7C3*8C4 Now 3 more questions need to be answered from 4 of A and 4 of B. Cases: 3A,0B | 2A,1B | 1A,2B | 0A,3B 4C3*4C0 + 4C2*4C1 + 4C1*4C2 + 4C0*4C1 = 4 + 24 + 24 + 4 = 56 Finally: 7C3*8C4*56 = 35*70*56 = 137200 Why is it wrong? Let's say we chose A1,A2,A3 as mandatory from A and then chose A4,A5,A6 when we did 4C3*4C0 for (3A,0B). But we could have done it the other way round also, i.e. choose A4,A5,A6 as mandatory and then choose A1,A2,A3. So there is overcounting. Correct Solution : Simply create the cases for A,B: (3,7),(4,6),(5,5),(6,4) 7C3*8C7 + 7C4*8C6 + 7C5*8C5 + 7C6*8C4 = 2926. Q2 . A kindergarten teacher has 25 kids in her... Read more
Algebra DPP 1.3 Quadratics July 17, 2025 Q1 . For what values of b do the equations: 1988x² + bx + 8891 = 0 and 8891x² + bx + 1988 = 0 have a common root? Solution: We are given two quadratic equations: 1988 x 2 + b x + 8891 = 0 1988x^2 + bx + 8891 = 0 8891 x 2 + b x + 1988 = 0 8891x^2 + bx + 1988 = 0 We are to find the values of b b for which they have a common root . Step 1: Let α \alpha be the common root. Then α \alpha satisfies both equations. So, From equation (1): 1988 α 2 + b α + 8891 = 0 (i) 1988\alpha^2 + b\alpha + 8891 = 0 \quad \text{(i)} From equation (2): 8891 α 2 + b α + 1988 = 0 (ii) 8891\alpha^2 + b\alpha + 1988 = 0 \quad \text{(ii)} Step 2: Subtract equation (i) from equation (ii): ( 8891 α 2 − 1988 α 2 ) + ( b α − b α ) + ( 1988 − 8891 ) = 0 (8891\alpha^2 - 1988\alpha^2) + (b\alpha - b\alpha) + (1988 - 8891) = 0 ( 8891 − 1988 ) α 2 − ( 8891 − 1988 ) = 0 (8891 - 1988)\alpha^2 - (8891 - 1988) = 0 6903 α 2 − 6903 = 0 6903\alpha^2 - 6903 = 0 α 2 = 1 ⇒ α = ± 1 \alpha^2 = 1 \Rightar... Read more
Comments
Post a Comment