Proof for Sum of squares of first n natural,even,odd numbers - pending

 


We want to prove:

k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}

Method1: Polynomial Assumption and Coefficient Matching

The idea is to assume that the sum of squares is a cubic polynomial in nn:

k=1nk2=An3+Bn2+Cn+D\sum_{k=1}^{n} k^2 = An^3 + Bn^2 + Cn + D

But since k=10k2=0\sum_{k=1}^0 k^2 = 0, we know that when n=0n = 0, the sum is 0 ⇒ D=0D = 0.

So we assume:

k=1nk2=An3+Bn2+Cn\sum_{k=1}^{n} k^2 = An^3 + Bn^2 + Cn

Now compute the sum for small values of nn:

  • n=1n = 1:

    12=A(1)3+B(1)2+C(1)=A+B+CA+B+C=1(1)1^2 = A(1)^3 + B(1)^2 + C(1) = A + B + C \Rightarrow A + B + C = 1 \tag{1}
  • n=2n = 2:

    12+22=1+4=58A+4B+2C=5(2)1^2 + 2^2 = 1 + 4 = 5 \Rightarrow 8A + 4B + 2C = 5 \tag{2}
  • n=3n = 3:

    12+22+32=1+4+9=1427A+9B+3C=14(3)1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14 \Rightarrow 27A + 9B + 3C = 14 \tag{3}

Solving the system of equations

From (1):

A+B+C=1A + B + C = 1

From (2):

8A+4B+2C=58A + 4B + 2C = 5

From (3):

27A+9B+3C=1427A + 9B + 3C = 14

Step 1: Eliminate C

Multiply (1) by 2:

2A+2B+2C=22A + 2B + 2C = 2

Subtract from (2):

(8A+4B+2C)(2A+2B+2C)=526A+2B=3(4)(8A + 4B + 2C) - (2A + 2B + 2C) = 5 - 2 \Rightarrow 6A + 2B = 3 \tag{4}

Multiply (1) by 3:

3A+3B+3C=33A + 3B + 3C = 3

Subtract from (3):

(27A+9B+3C)(3A+3B+3C)=14324A+6B=11(5)(27A + 9B + 3C) - (3A + 3B + 3C) = 14 - 3 \Rightarrow 24A + 6B = 11 \tag{5}

Step 2: Solve equations (4) and (5)

From (4):

6A+2B=33A+B=1.5(6)6A + 2B = 3 \Rightarrow 3A + B = 1.5 \tag{6}

From (5):

24A+6B=114A+B=116(7)24A + 6B = 11 \Rightarrow 4A + B = \frac{11}{6} \tag{7}

Subtract (6) from (7):

(4A+B)(3A+B)=11632A=11696=26=13(4A + B) - (3A + B) = \frac{11}{6} - \frac{3}{2} \Rightarrow A = \frac{11}{6} - \frac{9}{6} = \frac{2}{6} = \frac{1}{3}

Now substitute A=13A = \frac{1}{3} into (6):

313+B=1.51+B=1.5B=0.5=123 \cdot \frac{1}{3} + B = 1.5 \Rightarrow 1 + B = 1.5 \Rightarrow B = 0.5 = \frac{1}{2}

Now substitute AA and BB into (1):

13+12+C=156+C=1C=16\frac{1}{3} + \frac{1}{2} + C = 1 \Rightarrow \frac{5}{6} + C = 1 \Rightarrow C = \frac{1}{6}

Final Formula

k=1nk2=An3+Bn2+Cn=13n3+12n2+16n\sum_{k=1}^{n} k^2 = An^3 + Bn^2 + Cn = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n

Factor:

=n(n+1)(2n+1)6= \frac{n(n+1)(2n+1)}{6}

✅ Q.E.D.



Method 2: Derivation Using Cubes

We start with the identity:

(n+1)3n3=3n2+3n+1(n+1)^3 - n^3 = 3n^2 + 3n + 1

Now, sum both sides from n=1n = 1 to n=Nn = N:

Left-hand side (LHS):

n=1N((n+1)3n3)\sum_{n=1}^N \left((n+1)^3 - n^3\right)

This is a telescoping sum:

(2313)+(3323)+(4333)++((N+1)3N3)(2^3 - 1^3) + (3^3 - 2^3) + (4^3 - 3^3) + \dots + ((N+1)^3 - N^3)

Almost everything cancels, and we're left with:

(N+1)313=(N+1)31(N+1)^3 - 1^3 = (N+1)^3 - 1


Right-hand side (RHS):

n=1N(3n2+3n+1)=3n=1Nn2+3n=1Nn+n=1N1\sum_{n=1}^N (3n^2 + 3n + 1) = 3 \sum_{n=1}^N n^2 + 3 \sum_{n=1}^N n + \sum_{n=1}^N 1

We use known formulas:

  • n=1Nn=N(N+1)2\sum_{n=1}^N n = \frac{N(N+1)}{2}

  • n=1N1=N\sum_{n=1}^N 1 = N

So,

(N+1)31=3n=1Nn2+3N(N+1)2+N(N+1)^3 - 1 = 3 \sum_{n=1}^N n^2 + 3 \cdot \frac{N(N+1)}{2} + N


Now Solve for n=1Nn2\sum_{n=1}^N n^2:

(N+1)31=3n=1Nn2+3N(N+1)2+N(N+1)^3 - 1 = 3 \sum_{n=1}^N n^2 + \frac{3N(N+1)}{2} + N

Move other terms to the left:

3n=1Nn2=(N+1)313N(N+1)2N3 \sum_{n=1}^N n^2 = (N+1)^3 - 1 - \frac{3N(N+1)}{2} - N

Now simplify the RHS:

  • (N+1)3=N3+3N2+3N+1(N+1)^3 = N^3 + 3N^2 + 3N + 1

  • So (N+1)31=N3+3N2+3N(N+1)^3 - 1 = N^3 + 3N^2 + 3N

Thus:

3n=1Nn2=N3+3N2+3N3N(N+1)2N3 \sum_{n=1}^N n^2 = N^3 + 3N^2 + 3N - \frac{3N(N+1)}{2} - N

Combine like terms:

=N3+3N2+3NN3N(N+1)2=N3+3N2+2N3N(N+1)2= N^3 + 3N^2 + 3N - N - \frac{3N(N+1)}{2} = N^3 + 3N^2 + 2N - \frac{3N(N+1)}{2}

Now write all with a common denominator:

=2N3+6N2+4N3N(N+1)2=2N3+6N2+4N3N23N2=2N3+3N2+N2= \frac{2N^3 + 6N^2 + 4N - 3N(N+1)}{2} = \frac{2N^3 + 6N^2 + 4N - 3N^2 - 3N}{2} = \frac{2N^3 + 3N^2 + N}{2}

So,

3n=1Nn2=2N3+3N2+N23 \sum_{n=1}^N n^2 = \frac{2N^3 + 3N^2 + N}{2}

Divide both sides by 3:

n=1Nn2=2N3+3N2+N6=N(N+1)(2N+1)6\sum_{n=1}^N n^2 = \frac{2N^3 + 3N^2 + N}{6} = \frac{N(N+1)(2N+1)}{6}


✅ Final Result:

k=1nk2=n(n+1)(2n+1)6\boxed{\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}}



From here, it's easy to prove for even number sum: multiply by 4.
Then subtract that from sum of first 2n numbers' squares to get the formula for odd number square sum.

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics