Cotangent half-angle identity

 

Statement of the identity

cot ⁣(θ2)=1+cosθsinθ\boxed{\displaystyle \cot\!\left(\tfrac{\theta}{2}\right)=\frac{1+\cos\theta}{\sin\theta}}

This relates the cotangent of half an angle to the sine and cosine of the whole angle (with θ≢2kπ\theta\not\equiv 2k\pi so sinθ0\sin\theta\neq0).


Proof using double-angle formulas

  1. Start from double-angle expressions

    sinθ  =  2sin ⁣(θ2)cos ⁣(θ2),1+cosθ  =  2cos2 ⁣(θ2).\sin\theta \;=\; 2\sin\!\bigl(\tfrac{\theta}{2}\bigr)\cos\!\bigl(\tfrac{\theta}{2}\bigr), \quad 1+\cos\theta \;=\; 2\cos^{2}\!\bigl(\tfrac{\theta}{2}\bigr).
  2. Form the ratio 1+cosθsinθ\dfrac{1+\cos\theta}{\sin\theta}

    1+cosθsinθ  =  2cos2 ⁣(θ2)2sin ⁣(θ2)cos ⁣(θ2)  =  2cos2 ⁣(θ2)2sin ⁣(θ2)cos ⁣(θ2)  =  cos ⁣(θ2)sin ⁣(θ2).\frac{1+\cos\theta}{\sin\theta} \;=\; \frac{2\cos^{2}\!\bigl(\tfrac{\theta}{2}\bigr)}{2\sin\!\bigl(\tfrac{\theta}{2}\bigr)\cos\!\bigl(\tfrac{\theta}{2}\bigr)} \;=\; \frac{\color{royalblue}{\cancel{2}}\cos^{\cancel{2}}\!\bigl(\tfrac{\theta}{2}\bigr)} {\color{royalblue}{\cancel{2}}\sin\!\bigl(\tfrac{\theta}{2}\bigr)\cos\!\bigl(\tfrac{\theta}{2}\bigr)} \;=\; \frac{\cos\!\bigl(\tfrac{\theta}{2}\bigr)}{\sin\!\bigl(\tfrac{\theta}{2}\bigr)}.
  3. Recognize the cotangent

    cos ⁣(θ2)sin ⁣(θ2)  =  cot ⁣(θ2).\frac{\cos\!\bigl(\tfrac{\theta}{2}\bigr)}{\sin\!\bigl(\tfrac{\theta}{2}\bigr)} \;=\; \cot\!\bigl(\tfrac{\theta}{2}\bigr).

Therefore

cot ⁣(θ2)=1+cosθsinθ.\boxed{\displaystyle \cot\!\left(\tfrac{\theta}{2}\right)=\frac{1+\cos\theta}{\sin\theta}}.

Notes & alternatives

  • Domain caveat: The identity requires sinθ0\sin\theta\neq0 (no division by zero), which excludes integer multiples of π\pi.

  • Alternate proof: Starting from the Pythagorean identity cot2x+1=csc2x\cot^{2}x+1=\csc^{2}x, substitute x=θ/2x=\theta/2 and use csc(θ/2)=1sin(θ/2)=2sin(θ/2)cos(θ/2)sinθ\csc(\theta/2)=\dfrac{1}{\sin(\theta/2)}=\dfrac{2\sin(\theta/2)\cos(\theta/2)}{\sin\theta} to reach the same result, though the double-angle route above is the most direct.

  • Geometric viewpoint: On the unit circle, draw a diameter perpendicular to the initial side of angle θ\theta; similar right triangles give the same ratio cot(θ/2)\cot(\theta/2).

This completes both the statement and its proof.

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

IOQM 2023 solutions