Number theory class

Q. Find the value of

x46x32x2+18x+23x28x+15\frac{x^4 - 6x^3 - 2x^2 + 18x + 23}{x^2 - 8x + 15}

where

x=1983x = \sqrt{19 - 8\sqrt{3}}

Solution:

Nice one! Let x=1983x=\sqrt{19-8\sqrt3}.
Recognize 1983=(163)219-8\sqrt3=(\sqrt{16}-\sqrt{3})^2, so

x=43.x=4-\sqrt3.

Hence xx satisfies its quadratic:

(43)2=1983    x28x+13=0x2=8x13.(4-\sqrt3)^2=19-8\sqrt3 \;\Rightarrow\; x^2-8x+13=0 \quad\Rightarrow\quad x^2=8x-13.

Use this to reduce powers:

x3=x(8x13)=8x213x=8(8x13)13x=51x104,x4=x(51x104)=51x2104x=51(8x13)104x=304x663.\begin{aligned} x^3&=x(8x-13)=8x^2-13x=8(8x-13)-13x=51x-104,\\ x^4&=x(51x-104)=51x^2-104x=51(8x-13)-104x=304x-663. \end{aligned}

Now the numerator:

x46x32x2+18x+23=(304x663)6(51x104)2(8x13)+18x+23=(30430616+18)x+(663+624+26+23)=0x+10=10.\begin{aligned} x^4-6x^3-2x^2+18x+23 &=(304x-663)-6(51x-104)-2(8x-13)+18x+23\\ &=(304-306-16+18)x+(-663+624+26+23)\\ &=0\cdot x+10=10. \end{aligned}

And the denominator:

x28x+15=(x28x+13)+2=0+2=2.x^2-8x+15=(x^2-8x+13)+2=0+2=2.

Therefore,

x46x32x2+18x+23x28x+15=102=5.



Q. Find the unit digit of the expression

x=(2a4+aa3+3a3a)1993
Solution:
|a| - 3 >= 0 and 3 - |a| >= 0
=> a +-3
a = 3 will make denominator 0.
=> a = -3
x = (-6)^1993
Any power of an integer ending in 6 will be 6.
Answer = 6.


Q. How many ordered pairs of +ve integers (x,y)(x, y) satisfy the equation

xy+yx+2006xy2006x2006y2006=0

Solution:

Let a=na=\sqrt n and b=yb=\sqrt y.
Then

ny+yn+2006ny2006n2006y2006=ab(a+b)+2006(abab)2006.n\sqrt y+y\sqrt n+\sqrt{2006ny}-\sqrt{2006n}-\sqrt{2006y}-2006 =ab(a+b)+\sqrt{2006}(ab-a-b)-2006.

Notice this factors nicely:

ab(a+b)+2006(abab)2006=(ab2006)(a+b+2006).ab(a+b)+\sqrt{2006}(ab-a-b)-2006 =(ab-\sqrt{2006})(a+b+\sqrt{2006}).

Since a,b,2006>0a,b,\sqrt{2006}>0, the second factor is never 00.
So we must have ab=2006ab=\sqrt{2006}, i.e. ny=2006\sqrt{ny}=\sqrt{2006}, hence ny=2006ny=2006.

Thus the number of ordered positive integer pairs (n,y)(n,y) equals the number of divisors of 20062006.

2006=21759d(2006)=(1+1)3=8.2006=2\cdot17\cdot59 \quad\Rightarrow\quad d(2006)=(1+1)^3=8.

Answer: 8 ordered pairs (e.g., (1,2006),(2,1003),(17,118),(34,59)(1,2006),(2,1003),(17,118),(34,59) and their swaps).


Q:

$$ \left(5 + 2\sqrt{6}\right)^{x^2 - 3} + \left(5 - 2\sqrt{6}\right)^{x^2 - 3} = 10  $$ Find x.

Solution:

Let a=5+26a=5+2\sqrt6. Then (526)=a1(5-2\sqrt6)=a^{-1} since a(526)=1a(5-2\sqrt6)=1.

So the equation becomes

at+at=10,where t=x23.a^{t}+a^{-t}=10,\quad \text{where } t=x^2-3.

Let u=atu=a^{t}. Then u+1u=10u210u+1=0u+\frac1u=10 \Rightarrow u^2-10u+1=0, giving

u=5±26.u=5\pm 2\sqrt6.

But 5+26=a5+2\sqrt6=a and 526=a15-2\sqrt6=a^{-1}. Hence at=aa^{t}=a or at=a1a^{t}=a^{-1}, so t=1t=1 or t=1t=-1.

Thus x23=±1x2=4x^2-3=\pm1\Rightarrow x^2=4 or x2=2x^2=2, and

x=±2, ±2.asdf

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics