Number theory example problems



Q.
a4+a2+1a^4 + a^2 + 1 is a prime number
Find the number of possible values of aa

(i) if aNa \in \mathbb{N}
(ii) if aIa \in \mathbb{I}


Solution:


a4+a2+1=(a2)2+12+2a2=(a2+1)2a2a^4 + a^2 + 1 = (a^2)^2 + 1^2 + 2a^2 = (a^2 + 1)^2 - a^2 a4+a2+1=(a2+1+a)(a2+1a)a^4 + a^2 + 1 = (a^2 + 1 + a)(a^2 + 1 - a)

So,

a4+a2+1=(a2+1+a)(a2+1a)a^4 + a^2 + 1 = (a^2 + 1 + a)(a^2 + 1 - a)

→ Since these are 2 factors of a prime number, one of them is 1 and the other is the prime number itself.


Case I: First factor is 1.


a2+a=0a(a+1)=0a=0,a=1a^2 + a = 0 \Rightarrow a(a + 1) = 0 \Rightarrow a = 0, a = -1

Now check both in a2+1aa^2 + 1 - a:

  • a=0a = 0: 04+02+1=10^4 + 0^2 + 1 = 1Not prime

  • a=1a = -1:

    1+1+1=3prime1 + 1 + 1 = 3 \Rightarrow \text{prime}

✅ So only valid value is a=1a = -1



Case - II

a2+1a=1a2a=0a(a1)=0a=0,a=1a^2 + 1 - a = x \Rightarrow a^2 - a = 0 \Rightarrow a(a - 1) = 0 \Rightarrow a = 0, a = 1

Now check in a2+1+aa^2 + 1 + a if it's prime:

  • a=0a = 0: Not prime

  • a=1a = 1:

    1+1+1=3prime1 + 1 + 1 = 3 \Rightarrow \text{prime} \quad \checkmark



Q2)
For how many positive integers nn is n23n+2n^2 - 3n + 2 a prime number?


n23n+2=(n1)(n2)n^2 - 3n + 2 = (n - 1)(n - 2)

Now, test values:

Case ①

n1=1n=2 But n2=0Not a primen - 1 = 1 \Rightarrow n = 2 \\ n - 2 = 0 \Rightarrow \text{Not a prime} \quad ✗

Case ②

n2=1n=3 And n1=2Primen - 2 = 1 \Rightarrow n = 3 \\ n - 1 = 2 \Rightarrow \text{Prime} \quad \checkmark


So only one positive integer n=3n = 3 makes the expression prime.
But we forgot to check if one factor is -1 and other factor is negative of the prime.


(iii)

n1=1n=0(n2) is negativen2prime✗ not valid because questions wants positive.n - 1 = -1 \Rightarrow n = 0 \quad ✗ \\ (n - 2) \text{ is negative} \\ |n - 2| \rightarrow \text{prime} \quad \text{✗ not valid}


(iv)

n2=1n=1 And n1 = 0which is not prime. So invalid.n - 2 = -1 \Rightarrow n = 1 \\ n - 1 \rightarrow \text{negative} \Rightarrow \text{✗}


Final Answer:

Ans: 1\boxed{\text{Ans: } 1}



Q.
a,b,ca, b, c are prime numbers

a+b+c=66a + b + c = 66 ab+bc+ca=1071ab + bc + ca = 1071

Find:

abc= ?abc = \ ?


Out of a,b,c one is even and rest 2 are odd. No other combination is possible.
Only even prime is 2.
WLOG, a = 2.
This gives 2 equations in 2 variables (b,c).
You will get a quadratic solving which you will get b,c = 23,41


Q.
The number of positive integral values of nn
for which n38n2+20n13n^3 - 8n^2 + 20n - 13 is a prime number.


Solution:
Using rational root theorem we can identify one of the roots as 1.
Dividing by (n-1) we get the other factor as (n^2 - 7n + 13).


Case – I

n1=1n=2n - 1 = 1 \Rightarrow n = 2

Now check:

n27n+13414+13=3✓ primen^2 - 7n + 13 \Rightarrow 4 - 14 + 13 = 3 \quad \text{✓ prime}



Case – II

n27n+13=1n^2 - 7n + 13 = 1 n27n+12=0n23n4n+12=0(n3)(n4)=0 So n=3,4n^2 - 7n + 12 = 0 \\ n^2 - 3n - 4n + 12 = 0 \\ (n - 3)(n - 4) = 0 \\ n = 3, 4

Now check whether n1n - 1 is prime.
n-1 = 2,3 So valid.




Q.
The number of natural numbers nn for which

15n2+8n+6n\frac{15n^2 + 8n + 6}{n}

is a natural number.


Breakdown:

15n2n+8nn+6n=15n+8+6n\frac{15n^2}{n} + \frac{8n}{n} + \frac{6}{n} = 15n + 8 + \frac{6}{n}

For the expression to be a natural number:

6n must be a natural numbern must be a factor of 6n=1,2,3,6\frac{6}{n} \text{ must be a natural number} \Rightarrow n \text{ must be a factor of } 6 \Rightarrow n = 1, 2, 3, 6


Other values of n can be -1, -2, -3, -6 but then the original number wouldn't remain a natural number.



Q.
Find the number of integer nn for which

n20n\frac{n}{20 - n}

is a square of an integer.


Solution 1:
If n  = 0 then it's square of 0.
If n != 0 then 0 < n < 19 and denominator should be less then equal to n.
=> n >= 20 - n => n >= 10
Try n from 10 to 19.
n = 10, 16,18 work.
So answer = 4.

Solution 2:
Write it as:
(n - 20 + 20)/(20-n)
= -1 + 20/(20 - n)
For it to be integer (20-n) should be a factor of 20
=> 20 - n = 1,2,4,5,10,20 Or their negative values.
From that you will get 4 valid values again.



Q.
m,nm, n are natural numbers.
Find the number of pairs (m,n)(m, n) for which

m2+n2+2mn2013m2013n2014=0m^2 + n^2 + 2mn - 2013m - 2013n - 2014 = 0


Solution:
Let m+n = x then it's a quadratic in x with roots = -1, 2014
Since m,n are natural -1 is invalid.
Number of ordered pairs = 2013.

Q.
For how many natural numbers nn between 1 and 2014
(both inclusive) is

8n9999n\frac{8n}{9999 - n}

an integer?


Solution1:
It can be written as:
8/(9999/n - 1)
=> 9999/n - 1 is a factor of 8.
Try putting the values 1,2,4,8 and their negatives.
Only integer values of n you will get are 3333,1111 but the first one is > 2014. So only 1 answer.

Sure! Here's the converted text from the image:


Q. Let SS be the set of all integers nn such that

8n396n2+360n4002n7\frac{8n^3 - 96n^2 + 360n - 400}{2n - 7}

is an integer.

Find the value of

nSn\sum_{n \in S} |n|


Solution outline

  1. Polynomial-long division

8n396n2+36n4002n7=4n234n10111072n7.\frac{8n^{3}-96n^{2}+36n-400}{2n-7}=4n^{2}-34n-101-\frac{1107}{2n-7}.

So the fraction is integral ⇔ 11072n7\displaystyle\frac{1107}{2n-7} is integral.


  1. Divisibility condition

This means 2n711072n-7\mid 1107.

1107=3341all divisors d=±1,±3,±9,±27,±41,±123,±369,±1107.1107=3^{3}\cdot 41 \quad\Longrightarrow\quad \text{all divisors }d=\pm1,\pm3,\pm9,\pm27,\pm41,\pm123,\pm369,\pm1107.


  1. Corresponding integer nn

For each divisor dd,

2n7=d    n=d+72.2n-7=d\;\Longrightarrow\; n=\frac{d+7}{2}.

Because every dd is odd, d+7d+7 is even, so each gives an integer nn.

dd n=d+72n=\dfrac{d+7}{2}
±1 \pm1 4, 3
±3 \pm3 5, 2
±9 \pm9 8, –1
±27 \pm27 17, –10
±41 \pm41 24, –17
±123 \pm123 65, –58
±369 \pm369 188, –181
±1107 \pm1107 557, –550

Thus

S={4,5,8,17,24,65,188,557,3,2,1,10,17,58,181,550}.S=\{4,5,8,17,24,65,188,557,3,2,-1,-10,-17,-58,-181,-550\}.


  1. Required sum

nSn=4+5+8+17+24+65+188+557+3+2+1+10+17+58+181+550=1690.\sum_{n\in S}\lvert n\rvert =4+5+8+17+24+65+188+557+3+2+1+10+17+58+181+550 =1690.


1690

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics