Number theory - greatest integer function

Greatest Integer Function properties:
1. x-1 < [x] <= x < [x] + 1
2. for any integer 'n', [n+x] = n + [x]
3. [-x]
3a.  [-x] = -[x] - 1 if x is not integer
3b. [-x] = -[x] if x is integer
4. [x + y] >= [x] + [y]
4a. In general: [x + y + z ... -w] >= [x] + [y] + [z] -[w]
5. [xy] >= [x][y] and generalize like above


Ex1:
Solve for x.
2[x] = x + 2{x}
Where [] => greatest integer function and {} = fractional part function.
Solution:
Let x = p + q where p = [x] and q = {x} where 0 <= q < 1.
2p = p + q + 2q = p + 3q => p = 3q
Only 3 values of q can give an integer => 
q = 0 => p = 0
q = 1/3 => p =1
q = 2/3 => p = 2
So 3 solutions:
0+0, 1 + 1/3, 2 + 2/3
x = 0,4/3,8/3

Ex2:
36{x}^2 = 6[x]x
Solution:
Let x = p + q where p = [x] and q = {x} where 0 <= q < 1.
=> 36q^2 = 6p(p + q)
=> 6q^2 = p^2 + pq
=> p^2 + pq - 6q^2 = 0
Factorize to get:
p^2 + 3pq - 2pq - 6q^2 = 0
p(p + 3q) -2q(p + 3q) = 0
=> (p - 2q)(p + 3q) =0
p = 2q or p = -3q

Case 1:
p = 2q
Since q is positive:
q = 0 => p = 0
q = 1/2 => p = 1
are the only 2 solutions here.

Case 2:
p = -3q
q = 0 => p = 0
q = 1/3 => p = -1
q = 2/3 => p = -2

Finally:
x = 0+0,  1+1/2, -1+1/3,-2+2/3 = 0, 3/2, -2/3, -4/3 => 4 solutions.

Ex3.
Find number of real solutions for:
[x/2] + [2x/3] = x
Solution:

Let

x2+2x3=x,xR.\bigl\lfloor \tfrac{x}{2}\bigr\rfloor+\bigl\lfloor \tfrac{2x}{3}\bigr\rfloor=x, \qquad x\in\mathbb R .

1. xx must be an integer

Both floor-values are integers, so their sum is an integer; hence xx itself must be an integer.

2. Reduce the problem modulo 6

Write every integer as

x=6k+r,kZ,  r{0,1,2,3,4,5}.x = 6k+r, \qquad k\in\mathbb Z,\; r\in\{0,1,2,3,4,5\}.

Compute the two floors:

x2=6k+r2=3k+r2,\left\lfloor\frac{x}{2}\right\rfloor = \left\lfloor\frac{6k+r}{2}\right\rfloor = 3k+\left\lfloor\frac{r}{2}\right\rfloor, 2x3=12k+2r3=4k+2r3.\left\lfloor\frac{2x}{3}\right\rfloor = \left\lfloor\frac{12k+2r}{3}\right\rfloor = 4k+\left\lfloor\frac{2r}{3}\right\rfloor .

Adding and setting equal to xx:

7k+r2+2r3=6k+r    k+r2+2r3=r.7k+\left\lfloor\frac{r}{2}\right\rfloor+\left\lfloor\frac{2r}{3}\right\rfloor = 6k+r \;\Longrightarrow\; k+\left\lfloor\frac{r}{2}\right\rfloor+\left\lfloor\frac{2r}{3}\right\rfloor = r.

3. Solve for each remainder rr

rr r/2\lfloor r/2\rfloor 2r/3\lfloor 2r/3\rfloor Required k=rr/22r/3k=r-\lfloor r/2\rfloor-\lfloor 2r/3\rfloor
0 0 0 0
1 0 0 1
2 1 1 0
3 1 2 0
4 2 2 0
5 2 3 0

4. Construct the solutions

Insert each admissible (k,r)(k,r) into x=6k+rx=6k+r:

  • r=0,  k=0    x=0r=0,\;k=0 \;\Rightarrow\; x=0

  • r=1,  k=1    x=7r=1,\;k=1 \;\Rightarrow\; x=7

  • r=2,  k=0    x=2r=2,\;k=0 \;\Rightarrow\; x=2

  • r=3,  k=0    x=3r=3,\;k=0 \;\Rightarrow\; x=3

  • r=4,  k=0    x=4r=4,\;k=0 \;\Rightarrow\; x=4

  • r=5,  k=0    x=5r=5,\;k=0 \;\Rightarrow\; x=5

No negative kk satisfies the table, so there are no negative solutions.

5. Verification

Each candidate satisfies the original equation (quick check: 21+1=22\to 1+1=2, 73+4=77\to 3+4=7, etc.).


Number of real solutions=6, namely x{0,2,3,4,5,7}.

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

IOQM 2023 solutions