Number theory - Logarithms/Modulus function

Logarithms

ax=N    x=logaN,a>0,a1,N>0a^x = N \iff x = \log_a N , \quad a > 0, \, a \neq 1, \, N > 0

LHS is exponential form while the RHS is same thing written in logarithmic form.


NOTE:

(i) loga1=0\log_a 1 = 0 

(ii) logaa=1\log_a a = 1

(iii) loga(-ve)\log_a (\text{-ve}) is not defined

(iv) loga0\log_a 0 is not defined

Properties:


1.

loga(mn)=logam+logan\log_a(mn) = \log_a m + \log_a n


In general,

loga(x1x2x3xn)=logax1+logax2+logax3++logaxn



2.

loga(mn)=logamlogan\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a n


3.

loga(mn)=nlogam\log_a(m^n) = n \log_a m


4.

logap(mn)=nplogam\log_{a^p}(m^n) = \frac{n}{p} \log_a m


5.

logba=1logab\log_b a = \frac{1}{\log_a b}


6.

logba=logalogb\log_b a = \frac{\log a}{\log b}


7.

logbalogcblogdc=logda\log_b a \cdot \log_c b \cdot \log_d c = \log_d a


8.

alogaN=Na^{\log_a N} = N



9.

 alogbc=clogbaa^{\log_b c}=c^{\log_b a}.

Quick proof:
Let a=bxa=b^x and c=byc=b^y where x=logbax=\log_b a and y=logbcy=\log_b c.
Then (bx)y=bxy=(by)x(b^x)^y=b^{xy}=(b^y)^x, so alogbc=clogbaa^{\log_b c}=c^{\log_b a}.

Ex1.

Find ‘x’, if 9log3x=169^{\log_{3} x} = 16

Sol –
(32)log3x=16(3^2)^{\log_{3} x} = 16

32log3x=163^{2 \log_{3} x} = 16

3log3x2=16x2=163^{\log_{3} x^2} = 16 \Rightarrow x^2 = 16

x=±4

But x can't be negative so x = 4 = Answer.

Ex2.

  1. Simplify (12)log26\left(\frac{1}{2}\right)^{\log_{2} 6}

Answer: 1/6

Ex3.

  1. log23log34log45log511512\log_{2} 3 \cdot \log_{3} 4 \cdot \log_{4} 5 \cdots \log_{511} 512

Answer: 9

Ex4.

  1. Find the value of ‘x’, if 52log5xx6=05^{2 \log_{5} x} - x - 6 = 0

Sol –
x2x6=0x^2 - x - 6 = 0

(x3)(x+2)=0(x - 3)(x + 2) = 0

x=3,2

But x can't be negative, so answer: x = 3.

Logarithmic inequalities:
If base 0 < a < 1 then the sign flips, else it remains the same.
With base > 1:

log3x<5\log_{3} x < 5

x<35x < 3^5

x<243

With base < 1:

log0.1x>10\log_{0.1} x > 10

x<(0.1)10x < (0.1)^{10}

x<11010

Also:

log0.110\log_{0.1} 10

log10(110)\log_{10} \left(\frac{1}{10}\right)

log10101\log_{10} 10^{-1}

=1(log1010)= -1 \cdot (\log_{10} 10)

=1= -1


log0.1100\log_{0.1} 100

log101001\log_{10} 100^{-1}

2(log1010)-2 \cdot (\log_{10} 10)

=2= -2

10<100

But their logs base 0.1 are inverted in comparison.

Ex1.

Find interval of ‘x’ satisfying
log13(23xx)1

Solution:

log1/3 ⁣(23xx)1.\log_{1/3}\!\left(\frac{2-3x}{x}\right)\ge -1.

Since the base 1/3(0,1)1/3\in(0,1), log1/3\log_{1/3} , so

log1/3y1    y(1/3)1=3,\log_{1/3} y \ge -1 \iff y \le (1/3)^{-1}=3,

also, log of a number is defined only when it's > 0 So

23xx>0and23xx3.\frac{2-3x}{x}>0 \quad\text{and}\quad \frac{2-3x}{x}\le 3.

Domain: 23xx>00<x<23\frac{2-3x}{x}>0 \Rightarrow 0<x<\frac{2}{3}.

We got this using wavy curve method.

On this interval x>0x>0, so multiply by xx without flipping the sign:

23x3x    26x    x13.2-3x\le 3x \;\Rightarrow\; 2\le 6x \;\Rightarrow\; x\ge \frac{1}{3}.

Intersection:   x[13,23)  \boxed{\;x\in\left[\frac{1}{3},\,\frac{2}{3}\right)\;}.

(Check: at x=13x=\tfrac13, the log equals 1-1; at x=23x=\tfrac23 the argument is 00, not allowed.)

Modulus function properties:

For any a,bRa, b \in \mathbb{R},

(i) a0|a| \geq 0

(ii) a=a|a| = |-a|

(iii) ab=ab|a \cdot b| = |a| \cdot |b|

(iv) ab=ab,(b0)\left|\frac{a}{b}\right| = \frac{|a|}{|b|}, \quad (b \neq 0)

(v) a+ba+b

(vi) abab|a| - |b| \leq |a - b|

(vii) ab=ab\big||a| - |b|\big| = |a - b| iff ab0

If a>0a > 0,

x<aa<x<a

x>ax<a or x>a


Ex 1.

Solve |2x + 1| < 7

So: -7 < 2x + 1 < 7

-7 - 1 < 2x + 1 - 1 < 7 - 1

-8 < 2x < 6

-4 < x < 3

x ∈ (-4, 3)

Ex2.

x3+x+410|x - 3| + |x + 4| \geq 10

Critical points: 3,43, -4

x<4;4x3;x>3

We need to test it in above 3 intervals.

Case 1: When x < -4, both terms inside modulus are negative so we can write:
-(x-3) - (x+4) >= 10
=> -2x-1 >= 10
=> -2x >= 11
=> x <= -11/2 which is indeed < -4 so valid

Case 2: -4 <= x <= 3 => 
First term is negative but second is positive.
-(x-3) + (x+4) >= 10
=> 7 >= 10 Invalid

Case 3: x > 3
Both terms are positive.
x - 3 + x + 4 >= 10
=> 2x >= 9 => x >= 9/2 which complies with x > 3. 
Answer: x <= -11/2 Union x > 3.


Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

IOQM 2023 solutions