Number-Theory theory class



Multiplication of surds

(i)

an×bn=abn\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}

if a>0, b>0, na > 0, \ b > 0, \ n is a +ve rational number

(ii)

anbn=abn\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}

(iii)

amn=amn=amn\sqrt[n]{\sqrt[m]{a}} = \sqrt[n]{\sqrt[m]{a}} = \sqrt[mn]{a}

#
(i)

an×bn=abn\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}

(ii)

an×bn=a1mn×b1mn\sqrt[n]{a} \times \sqrt[n]{b} = a^{\frac{1}{mn}} \times b^{\frac{1}{mn}} (am)1mn×(bn)1mnammn×bnmnambnmn(a^m)^{\frac{1}{mn}} \times (b^n)^{\frac{1}{mn}} \Rightarrow \sqrt[mn]{a^m} \times \sqrt[mn]{b^n} \Rightarrow \sqrt[mn]{a^m b^n}

Ex1:


33×24\sqrt[3]{3} \times \sqrt[4]{2}


31×43×4×21×34×33^{\frac{1 \times 4}{3 \times 4}} \times 2^{\frac{1 \times 3}{4 \times 3}} =(34)112×(23)112= (3^4)^{\frac{1}{12}} \times (2^3)^{\frac{1}{12}} =8112×812= \sqrt[12]{81} \times \sqrt[12]{8} =81×812=64812= \sqrt[12]{81 \times 8} = \sqrt[12]{648}


Ex2:


Q:

(10+11+12)×(10+1112)×(1011+12)×(101112)(\sqrt{10} + \sqrt{11} + \sqrt{12}) \times (\sqrt{10} + \sqrt{11} - \sqrt{12}) \times (\sqrt{10} - \sqrt{11} + \sqrt{12}) \times (\sqrt{10} - \sqrt{11} - \sqrt{12})

Let:

  • a=10+11a = \sqrt{10} + \sqrt{11}

  • b=12b = \sqrt{12}

[(10+11)2(12)2][(1011)2(12)2][(\sqrt{10} + \sqrt{11})^2 - (\sqrt{12})^2][(\sqrt{10} - \sqrt{11})^2 - (\sqrt{12})^2] (10+11+211012)(10+11211012)(10 + 11 + 2\sqrt{110} - 12)(10 + 11 - 2\sqrt{110} - 12) (9+2110)(92110)(9 + 2\sqrt{110})(9 - 2\sqrt{110})

Let:

  • a+b=9+2110a + b = 9 + 2\sqrt{110}

  • ab=92110a - b = 9 - 2\sqrt{110}

=92(2110)2= 9^2 - (2\sqrt{110})^2 =814×110=81440=359


Rationalizing factor ⇒

If the product of two surds is rational number, then each of the two is R.F of each other.


Note:

(i)
R.F of an    an1n\sqrt[n]{a} \iff \sqrt[n]{a^{n-1}}

an×an1n=ann=a\sqrt[n]{a} \times \sqrt[n]{a^{n-1}} = \sqrt[n]{a^n} = a


(ii)
R.F of amn    anmn\sqrt[n]{a^m} \iff \sqrt[n]{a^{n-m}}


(iii)
R.F of a+b    ab\sqrt{a} + \sqrt{b} \iff \sqrt{a} - \sqrt{b}

(a+b)(ab)(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) abaa - b \Rightarrow a


(iv)

(a3+b3)(a23ab3+b23)\left( \sqrt[3]{a} + \sqrt[3]{b} \right) \Rightarrow \left( \sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2} \right)


(v)
R.F of (a3b3)    (a23+ab3+b23)\left( \sqrt[3]{a} - \sqrt[3]{b} \right) \iff \left( \sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2} \right)


(a+b)=(a13)2+(b13)2=(a23+b23)(a23ab3+b23)(a + b) = \left( a^{\frac{1}{3}} \right)^2 + \left( b^{\frac{1}{3}} \right)^2 = \left( a^{\frac{2}{3}} + b^{\frac{2}{3}} \right) \left( \sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2} \right) a+b=a+b33(a23ab3+b23)a + b = \sqrt[3]{a + \sqrt[3]{b}} \left( \sqrt[3]{a^2} - \sqrt[3]{ab} + \sqrt[3]{b^2} \right)

Ex3:


x=7+373x = \frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} y=737+3y = \frac{\sqrt{7} - \sqrt{3}}{\sqrt{7} + \sqrt{3}} (x+y)4+(x4+y4)=?(x + y)^4 + (x^4 + y^4) = ?


Solution:


x+y=7+373+737+3x + y = \frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} - \sqrt{3}} + \frac{\sqrt{7} - \sqrt{3}}{\sqrt{7} + \sqrt{3}} =(7+3)2+(73)273= \frac{(\sqrt{7} + \sqrt{3})^2 + (\sqrt{7} - \sqrt{3})^2}{7 - 3} =7+3+221+7+32214=204=5= \frac{7 + 3 + 2\sqrt{21} + 7 + 3 - 2\sqrt{21}}{4} = \frac{20}{4} = 5 x+y=5,xy=1\boxed{x + y = 5}, \quad \boxed{xy = 1}


x2+y2+2(xy)=25x2+y2=23x^2 + y^2 + 2(xy) = 25 \Rightarrow x^2 + y^2 = 23


x4+y4+2(xy)2=529x4+y4=527x^4 + y^4 + 2(xy)^2 = 529 \Rightarrow \boxed{x^4 + y^4 = 527}


(x+y)4+(x4+y4)(x + y)^4 + (x^4 + y^4) 54+527=625+527=11525^4 + 527 = 625 + 527 = \boxed{1152}




Ex4:


Q.

x=7+43,xy=1x = 7 + 4\sqrt{3}, \quad xy = 1 1x2+1y2=?\frac{1}{x^2} + \frac{1}{y^2} = ?


Solution:


y2+x2(xy)2=x2+y2(since xy=1)\frac{y^2 + x^2}{(xy)^2} = x^2 + y^2 \quad \text{(since } xy = 1 \text{)} y=1x=17+43×743743=7434916×3=743y = \frac{1}{x} = \frac{1}{7 + 4\sqrt{3}} \times \frac{7 - 4\sqrt{3}}{7 - 4\sqrt{3}} = \frac{7 - 4\sqrt{3}}{49 - 16 \times 3} = 7 - 4\sqrt{3} x2+y2=(7+43)2+(743)2x^2 + y^2 = (7 + 4\sqrt{3})^2 + (7 - 4\sqrt{3})^2 =49+48+563+49+48563= 49 + 48 + 56\sqrt{3} + 49 + 48 - 56\sqrt{3}

(Since the irrational parts cancel out)

=97+97=194= 97 + 97 = \boxed{194}


Ex5:


Q.

333(493293+193)1=1+a3\sqrt[3]{3} \cdot \left( \sqrt[3]{\frac{4}{9}} - \sqrt[3]{\frac{2}{9}} + \sqrt[3]{\frac{1}{9}} \right)^{-1} = 1 + a a3=?a^3 = ?


Solution:


333(4323+193)1=1+a3\sqrt[3]{3} \left( \frac{\sqrt[3]{4} - \sqrt[3]{2} + 1}{\sqrt[3]{9}} \right)^{-1} = 1 + a 333(23223+193)1=1+a3\sqrt[3]{3} \left( \frac{\sqrt[3]{2}^2 - \sqrt[3]{2} + 1}{\sqrt[3]{9}} \right)^{-1} = 1 + a =33393(23)223+1×23+123+1= \frac{3\sqrt[3]{3} \cdot \sqrt[3]{9}}{(\sqrt[3]{2})^2 - \sqrt[3]{2} + 1} \times \frac{\sqrt[3]{2} + 1}{\sqrt[3]{2} + 1} =3273(23+1)(23)3+1= \frac{3\sqrt[3]{27} \cdot (\sqrt[3]{2} + 1)}{(\sqrt[3]{2})^3 + 1} =3(23+1)=1+aa=23a3=2= 3 \cdot (\sqrt[3]{2} + 1) = 1 + a \Rightarrow a = \sqrt[3]{2} \Rightarrow a^3 = 2


Home work:



85. Simplify

a+a+83a1333+aa+83a1333\sqrt[3]{a + \frac{a + 8}{3} \sqrt[3]{\frac{a - 1}{3}}} + \sqrt[3]{a - \frac{a + 8}{3} \sqrt[3]{\frac{a - 1}{3}}}

Options:
(1) 1 (2) 2 (3) -2 (4) 4

Solution:

Answer: 2

Let

x=a+a+83a133+aa+83a133=u+v.x=\sqrt[3]{\,a+\frac{a+8}{3}\sqrt{\frac{a-1}{3}}\,}+\sqrt[3]{\,a-\frac{a+8}{3}\sqrt{\frac{a-1}{3}}\,}=u+v .

Then

u3=a+a+83a13,v3=aa+83a13.u^3=a+\frac{a+8}{3}\sqrt{\frac{a-1}{3}},\qquad v^3=a-\frac{a+8}{3}\sqrt{\frac{a-1}{3}}.

So

u3+v3=2a,uv=a2(a+83)2 ⁣(a13)3=(4a)3273=4a3.u^3+v^3=2a,\qquad uv=\sqrt[3]{a^2-\left(\frac{a+8}{3}\right)^2\!\left(\frac{a-1}{3}\right)} =\sqrt[3]{\frac{(4-a)^3}{27}}=\frac{4-a}{3}.

Cubing x=u+vx=u+v:

x3=u3+v3+3uv(u+v)=2a+(4a)x.x^3=u^3+v^3+3uv(u+v)=2a+(4-a)x.

Thus xx satisfies

x3(4a)x2a=0.x^3-(4-a)x-2a=0.

Or write it as: x^3  -4x + a(x - 2) = 0
For the coefficient of a to be 0, x = 2 and that also makes x^3 - 4x = 0.
So answer = 2.

86. Find the value of

2222...2+2+2+2+...\sqrt{2\sqrt{2\sqrt{2\sqrt{2...}}}} - \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + ...}}}}

Options:
(1) 1 (2) 2 (3) 0 (4) cannot be found
Solution:
Let the first term be x.
Then: x = sqrt(2.x) => x^2 = 2x => x = 0,2. But x > 0 => x = 2.
Similarly for the second term y = sqrt(2 + y) => y^2 - y - 2 = 0 => y = 2,-1 but y > 0 => y = 2
So answer = 2 - 2 = 0.


87. Simplify

2+3+23\sqrt{2 + \sqrt{3}} + \sqrt{2 - \sqrt{3}}

Options:
(1) 2\sqrt{2} (2) 3\sqrt{3} (3) 5\sqrt{5} (4) 6\sqrt{6}
Solution:
2+3+23=x\sqrt{2+\sqrt3}+\sqrt{2-\sqrt3}=x

Square both sides:

x2=(2+3)+(23)+2(2+3)(23)=4+243=4+2=6.x^2=(2+\sqrt3)+(2-\sqrt3)+2\sqrt{(2+\sqrt3)(2-\sqrt3)} =4+2\sqrt{4-3}=4+2=6.

Since the expression is positive, x=6x=\sqrt6.

Answer: 6\boxed{\sqrt6}.


88. Evaluate

14+651465\sqrt{14 + 6\sqrt{5}} - \sqrt{14 - 6\sqrt{5}}

Options:
(1) 5\sqrt{5} (2) 5-\sqrt{5} (3) 252\sqrt{5} (4) 353\sqrt{5}
Solution:
x=14+651465x=\sqrt{14+6\sqrt5}-\sqrt{14-6\sqrt5}

Square it:

x2=(14+65)+(1465)2(14+65)(1465)=282142(65)2.x^2=(14+6\sqrt5)+(14-6\sqrt5)-2\sqrt{(14+6\sqrt5)(14-6\sqrt5)} =28-2\sqrt{14^2-(6\sqrt5)^2}. 142(65)2=196180=16x2=2824=20.14^2-(6\sqrt5)^2=196-180=16 \Rightarrow x^2=28-2\cdot4=20.

Since the first radical is larger, x>0x>0. Hence

x=20=25.x=\sqrt{20}=2\sqrt5.

Answer: 252\sqrt{5}.


89. Evaluate

8+63863\sqrt{8 + \sqrt{63}} - \sqrt{8 - \sqrt{63}}

Options:
(1) 7\sqrt{7} (2) 14\sqrt{14} (3) 2\sqrt{2} (4) 28\sqrt{28}


a=8+63863a=\sqrt{\,8+\sqrt{63}\,}-\sqrt{\,8-\sqrt{63}\,}

Square it:

a2=(8+63)+(863)2(8+63)(863)=1626463=1621=14.a^2=(8+\sqrt{63})+(8-\sqrt{63})-2\sqrt{(8+\sqrt{63})(8-\sqrt{63})} =16-2\sqrt{64-63}=16-2\cdot1=14.

Since 8+63>863\sqrt{8+\sqrt{63}}>\sqrt{8-\sqrt{63}}, a>0a>0. Thus

a=14.a=\sqrt{14}.

Answer: 14\boxed{\sqrt{14}}.



Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics