Multiplication of surds
(i)
if is a +ve rational number
(ii)
(iii)
#
(i)
(ii)
Ex1:
Ex2:
Q:
Let:
Let:
Rationalizing factor ⇒
If the product of two surds is rational number, then each of the two is R.F of each other.
Note:
(i)
R.F of
(ii)
R.F of
(iii)
R.F of
(iv)
(v)
R.F of
Ex3:
Solution:
Ex4:
Q.
Solution:
(Since the irrational parts cancel out)
Ex5:
Q.
Solution:
Home work:
85. Simplify
Options:
(1) 1 (2) 2 (3) -2 (4) 4
Solution:
Answer: 2
Let
Then
So
Cubing :
Thus satisfies
Or write it as: x^3 -4x + a(x - 2) = 0
For the coefficient of a to be 0, x = 2 and that also makes x^3 - 4x = 0.
So answer = 2.
86. Find the value of
Options:
(1) 1 (2) 2 (3) 0 (4) cannot be found
Solution:
Let the first term be x.
Then: x = sqrt(2.x) => x^2 = 2x => x = 0,2. But x > 0 => x = 2.
Similarly for the second term y = sqrt(2 + y) => y^2 - y - 2 = 0 => y = 2,-1 but y > 0 => y = 2
So answer = 2 - 2 = 0.
87. Simplify
Options:
(1) (2) (3) (4)
Square both sides:
x2=(2+3)+(2−3)+2(2+3)(2−3)=4+24−3=4+2=6.x^2=(2+\sqrt3)+(2-\sqrt3)+2\sqrt{(2+\sqrt3)(2-\sqrt3)}
=4+2\sqrt{4-3}=4+2=6.
Since the expression is positive, x=6x=\sqrt6.
Answer: 6\boxed{\sqrt6}.
88. Evaluate
14+65−14−65\sqrt{14 + 6\sqrt{5}} - \sqrt{14 - 6\sqrt{5}}
Options:
(1) 5\sqrt{5} (2) −5-\sqrt{5} (3) 252\sqrt{5} (4) 353\sqrt{5}
Solution:
x=14+65−14−65x=\sqrt{14+6\sqrt5}-\sqrt{14-6\sqrt5}
Square it:
x2=(14+65)+(14−65)−2(14+65)(14−65)=28−2142−(65)2.x^2=(14+6\sqrt5)+(14-6\sqrt5)-2\sqrt{(14+6\sqrt5)(14-6\sqrt5)}
=28-2\sqrt{14^2-(6\sqrt5)^2}.
142−(65)2=196−180=16⇒x2=28−2⋅4=20.14^2-(6\sqrt5)^2=196-180=16 \Rightarrow x^2=28-2\cdot4=20.
Since the first radical is larger, x>0x>0. Hence
x=20=25.x=\sqrt{20}=2\sqrt5.
Answer: 252\sqrt{5}.
89. Evaluate
8+63−8−63\sqrt{8 + \sqrt{63}} - \sqrt{8 - \sqrt{63}}
Options:
(1) 7\sqrt{7} (2) 14\sqrt{14} (3) 2\sqrt{2} (4) 28\sqrt{28}
a= 8+63 − 8−63 a=\sqrt{\,8+\sqrt{63}\,}-\sqrt{\,8-\sqrt{63}\,}
Square it:
a2=(8+63)+(8−63)−2(8+63)(8−63)=16−264−63=16−2⋅1=14.a^2=(8+\sqrt{63})+(8-\sqrt{63})-2\sqrt{(8+\sqrt{63})(8-\sqrt{63})}
=16-2\sqrt{64-63}=16-2\cdot1=14.
Since 8+63>8−63\sqrt{8+\sqrt{63}}>\sqrt{8-\sqrt{63}}, a>0a>0. Thus
a=14.a=\sqrt{14}.
Answer: 14\boxed{\sqrt{14}}.
Comments
Post a Comment