Surd Conjugacy


Theorem

Let FRF\subset\mathbb{R} be a ground field (think F=QF=\mathbb{Q}).
Take a,b,x,yFa,b,x,y\in F with y0y\ge 0 and yy not a square in FF (so yF\sqrt y\notin F).
Assume real radicals and that

a+b3=x+y.\sqrt[3]{\,a+\sqrt b\,}=x+\sqrt y .

Then

ab3=xy.\sqrt[3]{\,a-\sqrt b\,}=x-\sqrt y .

Proof

Now cube the assumed equality:

a+b=(x+y)3=(x3+3xy)+(3x2+y)y.a+\sqrt b=(x+\sqrt y)^3 =(x^3+3xy)+(3x^2+y)\sqrt y .

By the lemma, comparing the FF-part and the y\sqrt y-part gives

a=x3+3xy,b=(3x2+y)y.a=x^3+3xy,\qquad \sqrt b=(3x^2+y)\sqrt y .

Hence

ab=(x3+3xy)(3x2+y)y=(xy)3.a-\sqrt b =(x^3+3xy)-(3x^2+y)\sqrt y =(x-\sqrt y)^3 .

The real cube-root function is injective on R\mathbb{R}, so taking cube roots yields

ab3=xy.\sqrt[3]{\,a-\sqrt b\,}=x-\sqrt y .

This result also holds for 'nth surd'.


If

a+bn=x+y,\sqrt[n]{\,a+\sqrt b\,}=x+\sqrt y,

, then

(xy)n=ab.(x-\sqrt y)^n=a-\sqrt b.

Example 1:

Solve for x,y
:

373033=xy

Solution:

373033=xy\sqrt[3]{37 - 30\sqrt{3}} = x - \sqrt{y} 37+3033=x+y\sqrt[3]{37 + 30\sqrt{3}} = x + \sqrt{y} (37)230233=x2y


136927003=x2y\sqrt[3]{1369 - 2700} = x^2 - y 13313=x2yx2y=11\sqrt[3]{-1331} = x^2 - y \Rightarrow x^2 - y = -11 y=x2+11

373033=xy\sqrt[3]{37 - 30\sqrt{3}} = x - \sqrt{y} 37303=x33x2y+3xyyy37 - 30\sqrt{3} = x^3 - 3x^2\sqrt{y} + 3x y - y\sqrt{y} x3+3x(x2+11)=37


x3+3x3+33x37=0x^3 + 3x^3 + 33x - 37 = 0 4x3+33x37=0

It has one root as x = 1, others imaginary.


373033=xy=112=123

This gives the values of x,y.

Example 2:

Let

723253=xy.\sqrt[3]{72-32\sqrt5}=x-\sqrt y .

Do it the same way as the example.

Let

723253=xy72+3253=x+y.\sqrt[3]{72-32\sqrt5}=x-\sqrt y \quad\Rightarrow\quad \sqrt[3]{72+32\sqrt5}=x+\sqrt y .

Multiply the two:

(xy)(x+y)=x2y=(72325)(72+325)3=722(325)23=643=4,(x-\sqrt y)(x+\sqrt y)=x^2-y =\sqrt[3]{(72-32\sqrt5)(72+32\sqrt5)} =\sqrt[3]{72^2-(32\sqrt5)^2}=\sqrt[3]{64}=4,

so

y=x24.(1)y=x^2-4. \tag{1}

Now cube xyx-\sqrt y and match rational/irrational parts:

(xy)3=x3+3xy(3x2+y)y=72325.(x-\sqrt y)^3=x^3+3xy-(3x^2+y)\sqrt y =72-32\sqrt5.

Hence

x3+3xy=72,(3x2+y)y=325.x^3+3xy=72,\qquad (3x^2+y)\sqrt y=32\sqrt5.

Using (1) in the first equation:

x3+3x(x24)=72    4x312x=72    x33x18=0.x^3+3x(x^2-4)=72 \;\Rightarrow\; 4x^3-12x=72 \;\Rightarrow\; x^3-3x-18=0.

Try integer roots: x=3x=3 satisfies it. Then from (1),

y=x24=94=5.y=x^2-4=9-4=5.

Finally,

723253=xy=35.\sqrt[3]{72-32\sqrt5}=x-\sqrt y=3-\sqrt5.

So x=3,  y=5x=3,\; y=5.

Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

IOQM 2023 solutions