practice problems from PYQs.



Q.
x4qx3+2(10a)x+9qx+a=0x^4 - qx^3 + 2(10-a)x - 9qx + a = 0

For xx where aa is real parameter,
has no real roots for a(,pq)a \in (-\infty, -\tfrac{p}{q}).

p,qp, q are co-prime. Find p+qp+q.


Solution:
Divide by x^2:


x49x3+2(10a)x2+9ax+a2x2=0\frac{x^4 - 9x^3 + 2(10 - a)x^2 + 9ax + a^2}{x^2} = 0


x29x+202a+9ax+a2x2=0x^2 - 9x + 20 - 2a + \frac{9a}{x} + \frac{a^2}{x^2} = 0


(x2+a2x2)9(xax)+202a=0\left(x^2 + \frac{a^2}{x^2}\right) - 9\left(x - \frac{a}{x}\right) + 20 - 2a = 0


Let x - a/x = k


x2+a2x22axx=k2\Rightarrow \quad x^2 + \frac{a^2}{x^2} - \frac{2a}{x} \cdot x = k^2

Simplifies to:

x2+a2x2=k2+2ax^2 + \frac{a^2}{x^2} = k^2 + 2a



Simplified and Substituted Expression:

k2+2a9k+202a=0k^2 + 2a - 9k + 20 - 2a = 0

Cancelling +2a+2a and 2a-2a:

k29k+20=0k^2 - 9k + 20 = 0


Factored Form:

(k4)(k5)=0k=4ork=5(k - 4)(k - 5) = 0 \quad \Rightarrow \quad k = 4 \quad \text{or} \quad k = 5


Case 1: k = 4

x - a/x = 4 => x^2 - a = 4x => x^2 - 4x - a = 0

To ensure no real solutions:

D<0D < 0

Discriminant of quadratic x24xa=0x^2 - 4x - a = 0 is:

D=16+4a<0D = 16 + 4a < 0

Solve:

4a<16a<44a < -16 \Rightarrow a < -4


Final Result:

a<4\boxed{a < -4}

Case 2:
k = 5
x - a/x = 5 => x^2 - a - 5x = 0  D< 0 => a < -25/4
Combining both cases, finally:
a < -25/4
So p = 25, q = 4

Q:


Given:

  • a,bZ+a, b \in \mathbb{Z}^+ (i.e., both aa and bb are positive integers)

  • The equation:

    a+b=ab+baa + b = \frac{a}{b} + \frac{b}{a}

Question:

Find the value of:

a2+b2= ?a^2 + b^2 = \ ?


Solution:
Simplify the expression to get:
ab(a+b) = a^2 + b^2
b.a^2 + a.b^2 = a^2 + b^2
=> a^2(b-1) + b^2(a-1) = 0
For LHS to be zero, only possibility is when a = b = 1
So answer = 2.

Q:


Let α,β\alpha, \beta be the roots of the equation:

x2+52x+10=0x^2 + 5\sqrt{2}x + 10 = 0

with α>β\alpha > \beta

Define a sequence:

Pn=αnβn,nZ+P_n = \alpha^n - \beta^n,\quad n \in \mathbb{Z}^+

Evaluate the expression:

P17P20+52P17P19P18P19+52P182\frac{P_{17} \cdot P_{20} + 5\sqrt{2} \cdot P_{17} \cdot P_{19}}{P_{18} \cdot P_{19} + 5\sqrt{2} \cdot P_{18}^2}


Solution:

Given the quadratic equation:

α2+52α+10=0\alpha^2 + 5\sqrt{2} \alpha + 10 = 0

Multiply both sides by α\alpha:

α(α+52)=10\alpha(\alpha + 5\sqrt{2}) = -10

So:

α+52=10α\alpha + 5\sqrt{2} = \frac{-10}{\alpha}



Using the same idea for β\beta, since it’s also a root of the equation:

β+52=10β\beta + 5\sqrt{2} = \frac{-10}{\beta}



P17(α20β20+52(α19β19))P18(α19β19+52(α18β18))\frac{P_{17} \cdot (\alpha^{20} - \beta^{20} + 5\sqrt{2}(\alpha^{19} - \beta^{19}))}{P_{18} \cdot (\alpha^{19} - \beta^{19} + 5\sqrt{2}(\alpha^{18} - \beta^{18}))}


Using:

Pn=αnβnP_n = \alpha^n - \beta^n

So the expression becomes:

P17(α19(α+52)β19(β+52))P18(α18(α+52)β18(β+52))\frac{P_{17} \left( \alpha^{19}(\alpha + 5\sqrt{2}) - \beta^{19}(\beta + 5\sqrt{2}) \right)}{P_{18} \left( \alpha^{18}(\alpha + 5\sqrt{2}) - \beta^{18}(\beta + 5\sqrt{2}) \right)}


Substituting:

α+52=10α,β+52=10β\alpha + 5\sqrt{2} = \frac{-10}{\alpha}, \quad \beta + 5\sqrt{2} = \frac{-10}{\beta}

So:

=P17(α1910αβ1910β)P18(α1810αβ1810β)= \frac{P_{17} \left( \alpha^{19} \cdot \frac{-10}{\alpha} - \beta^{19} \cdot \frac{-10}{\beta} \right)}{P_{18} \left( \alpha^{18} \cdot \frac{-10}{\alpha} - \beta^{18} \cdot \frac{-10}{\beta} \right)}

Simplifies to:

=P17(10α18+10β18)P18(10α17+10β17)=P17(10P18)P18(10P17)=1= \frac{P_{17} \left( -10\alpha^{18} + 10\beta^{18} \right)}{P_{18} \left( -10\alpha^{17} + 10\beta^{17} \right)} = \frac{P_{17} \cdot (-10 P_{18})}{P_{18} \cdot (-10 P_{17})} = 1



Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

IOQM 2023 solutions