Practice problems



Q. Find the sum of all non-negative integers aa such that the quadratic equation

a2x2(3a28a)x+2a213a+15a^2 x^2 - (3a^2 - 8a)x + 2a^2 - 13a + 15

has at least one integer root.


Solution:

Solution sketch (step-by-step)

Step Reasoning
1 . Write the equation a2x2(3a28a)x+(2a213a+15)=0a^{2}x^{2}-\bigl(3a^{2}-8a\bigr)x+\bigl(2a^{2}-13a+15\bigr)=0.
2 . Compute the discriminant DD D=(3a28a)24a2(2a213a+15)D=\bigl(3a^{2}-8a\bigr)^{2}-4a^{2}\bigl(2a^{2}-13a+15\bigr).
3 . Simplify DD D=a4+4a3+4a2=a2(a+2)2=[a(a+2)]2D=a^{4}+4a^{3}+4a^{2}=a^{2}(a+2)^{2}=\bigl[a(a+2)\bigr]^{2} – already a perfect square, so roots are always rational.
4 . Write the roots explicitly x=3a28a  ±  a(a+2)2a2x=\dfrac{3a^{2}-8a\;\pm\;a(a+2)}{2a^{2}}. Splitting the ± gives x1=23a,x2=15a\displaystyle x_{1}=2-\frac{3}{a},\qquad x_{2}=1-\frac{5}{a}.
5 . Demand an integer root For at least one of x1,x2x_{1},x_{2} to be an integer, its fractional part must vanish: * x1x_{1} is integer ⇒ 3a\tfrac{3}{a} is integer ⇒ a3a\mid 3a=1a=1 or 33.* x2x_{2} is integer ⇒ 5a\tfrac{5}{a} is integer ⇒ a5a\mid 5a=1a=1 or 55.
6 . Collect admissible aa (non-negative, and a0a\neq0 so the equation stays quadratic) a{1,3,5}a\in\{1,3,5\}.
7 . Check each aa quickly a=1:  x2+5x+4=0a=1:\;x^{2}+5x+4=01,4-1,-4 OK.a=3:  9x23x6=0a=3:\;9x^{2}-3x-6=01,231,\,-\frac23 OK.a=5:  25x235x=0a=5:\;25x^{2}-35x=00,740,\,\frac74 ⇒ at least one integer root (0) OK.
8 . Sum them 1+3+5=91+3+5=9.

Answer

9\boxed{9}

So the sum of all non-negative integers aa for which the given quadratic has at least one integer root is 9.


Q.


Solution:



Q.

Solution:






Solution:














Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

IOQM 2023 solutions