Sum of squares of first n natural,even,odd numbers

Proofs are here.
The formula for the sum of squares of the first nn natural numbers is:

k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}

Example:

For n=5n = 5:

k=15k2=12+22+32+42+52=55\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55 Using formula: 5(5+1)(25+1)6=56116=55

______________________________________________________________________________

The sum of squares of the first nn even natural numbers is given by:

k=1n(2k)2=4k=1nk2=4n(n+1)(2n+1)6\sum_{k=1}^{n} (2k)^2 = 4 \sum_{k=1}^{n} k^2 = 4 \cdot \frac{n(n+1)(2n+1)}{6}

So the final formula is:

2n(n+1)(2n+1)3\boxed{\frac{2n(n+1)(2n+1)}{3}}


Example:

For n=3n = 3 (i.e., even numbers: 2, 4, 6):

22+42+62=4+16+36=562^2 + 4^2 + 6^2 = 4 + 16 + 36 = 56 Using formula: 23473=1683=56____________________________________________________________________

The sum of squares of the first nn odd natural numbers is given by:

k=1n(2k1)2=n(2n1)(2n+1)3\sum_{k=1}^{n} (2k - 1)^2 = \frac{n(2n - 1)(2n + 1)}{3}


Example:

For n=3n = 3 (i.e., odd numbers: 1, 3, 5):

12+32+52=1+9+25=351^2 + 3^2 + 5^2 = 1 + 9 + 25 = 35 Using formula: 3(5)(7)3=35\text{Using formula: } \frac{3(5)(7)}{3} = 35


So the boxed formula is:

n(2n1)(2n+1)3

_____________________________________________________________

The trick to remember them:
Remember the first master formula = n.(n+1).(2n+1)/6

Even sum is simply by multiplying it by 4: 2n.(n+1).(2n+1)/3

Odd sum is by moving the middle 1 in the previous formula to left.
So in:

2n.(n+1).(2n+1)/3

move +1 to left and make it -1:
(2n -1).n.(2n+1)/3



Comments

Popular posts from this blog

IOQM 2024 Paper solutions (Done 1-21, 29)

Combinatorics DPP - RACE 6 - Q16 pending discussion

Algebra DPP 1.3 Quadratics