Number theory - greatest integer function
Greatest Integer Function properties: 1. x-1 < [x] <= x < [x] + 1 2. for any integer 'n', [n+x] = n + [x] 3. [-x] 3a. [-x] = -[x] - 1 if x is not integer 3b. [-x] = -[x] if x is integer 4. [x + y] >= [x] + [y] 4a. In general: [x + y + z ... -w] >= [x] + [y] + [z] -[w] 5. [xy] >= [x][y] and generalize like above Ex1: Solve for x. 2[x] = x + 2{x} Where [] => greatest integer function and {} = fractional part function. Solution: Let x = p + q where p = [x] and q = {x} where 0 <= q < 1. 2p = p + q + 2q = p + 3q => p = 3q Only 3 values of q can give an integer => q = 0 => p = 0 q = 1/3 => p =1 q = 2/3 => p = 2 So 3 solutions: 0+0, 1 + 1/3, 2 + 2/3 x = 0,4/3,8/3 Ex2: 36{x}^2 = 6[x]x Solution: Let x = p + q where p = [x] and q = {x} where 0 <= q < 1. => 36q^2 = 6p(p + q) => 6q^2 = p^2 + pq => p^2 + pq - 6q^2 = 0 Factorize to get: p^2 + 3pq - 2pq - 6q^2 = 0 p(p + 3q) -2q(p + 3q) = 0 => (p - 2q)(p + 3q) =0 p = 2q or p = -3q ...